• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 15
  • 14
  • 2
  • 1
  • Tagged with
  • 45
  • 45
  • 14
  • 13
  • 8
  • 7
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

STRUCTURAL BEHAVIOUR OF PLASTERED STRAW BALE ASSEMBLIES UNDER CONCENTRIC AND ECCENTRIC LOADING

Vardy, STEPHEN 29 May 2009 (has links)
The use of plastered straw bale walls in residential construction is growing as builders and owners seek environmentally friendly alternatives to typical timber construction practices. Straw has excellent insulation properties and is an agricultural bi-product which is annually renewable, and is often considered a waste product of grain production. This thesis presents new models for predicting the compressive strength of plastered straw bale assemblies subjected to concentric and eccentric load. A constitutive model for lime-cement plaster is adapted from a stress-strain model for concrete, available in the literature. Twenty-two cylinder tests on plasters typically used for straw bale construction were used to verify the constitutive model. The models for plastered straw bale assemblies were verified by testing plastered straw bale assemblies under concentric and eccentric compressive loads. An innovative steel frame test jig was designed to facilitate fabrication and testing of the specimens. Using this jig, 18 specimens of height 0.33 m, 0.99 m, 1.05 m or 2.31 m were subjected to concentric or eccentric compressive load until failure. The experimental strengths of the assemblies ranged from 23 kN/m to 61 kN/m, depending on the eccentricity of the load, the plaster strength, and the plaster thickness. Results indicated that the specimen height did not significantly influence the strengths of the specimens. The models predicted the ultimate strength of the assemblies to be, on average, 6% less than the experimentally determined strengths, with a standard deviation of 13%. The models were also used to predict the theoretical ultimate strengths for a number of plastered straw bale wall assemblies described in the literature. The fabrication techniques for these specimens were more representative of conventional straw bale construction techniques, and it was found that the experimental results were 30% of the theoretical strengths for assemblies with plaster strength less than 10 MPa and 6% of the theoretical strengths for assemblies with plaster strength greater than 10 MPa. Thus, to account for construction imperfections and potential alternative failure mechanisms, a reduction factor of no more than 0.3 for plaster less than 10 MPa is suggested in order to predict the strength of plastered straw bale walls constructed using conventional construction techniques. The results presented herein provide support for the use of plastered straw bale walls in residential construction and indicate the applicability of models based on the compressive behaviour of lime-cement plaster for modelling the behaviour of plastered straw bale walls under eccentric and concentric compression. / Thesis (Ph.D, Civil Engineering) -- Queen's University, 2009-05-29 13:34:53.867
12

Effects of rear bumper beam deletion on the perception of steering performance of commercial vehicles

Banks, Alan James January 2015 (has links)
In order to remain competitive in the marketplace, all motor vehicle manufacturers face difficult decisions with regard to balancing cost vs. feature. That is to say that the manufacturer must balance the cost of the product to the customer to remain competitive whilst offering appropriate technology and standard features required by that customer. All motor manufacturers are therefore under pressure to keep costs of nonfeature items to a minimum. One of the cost reductions items prevalent on most vehicles is the deletion of the structural member that attaches the rear bumper, known as the bumper beam (RBB), which is researched in this Thesis. This generates average vehicle savings of $20 and, as this is invisible to the customer, should enable the manufacturers to realise a significant saving or allow this revenue to be spent on additional feature without loss of vehicle function. However, in nearly all cases, deletion of the rear bumper beam has the effect of degrading the steering responses of the vehicle by 1 to 1½ rating points (out of 10), which is contrary to the premise of cost reductions; which is to ensure that vehicle function is unaffected. Initial analysis of vehicles with deleted rear bumper beams cannot show an objective measurable difference in any vehicle behaviours with or without the beam fitted, and hence CAE studies using ADAMS models cannot verify the effects of the bumper beam. It was necessary to employ unconventional modelling and testing methods such as rigid body, flexible body model techniques as well as experimental studies included driving robots and expert driver appraisals. The research demonstrated that vehicle modelling methods currently used, cannot establish or predict the complete vehicle ride and handling status. A total vehicle model approach should be used without separating the body CAE model and vehicle dynamics ADAMS model into separate entities. Furthermore, it was concluded that the determination to the effects of body hysteresis rather than pure stiffness is of crucial importance and that the steering attribute could be maintained with the deletion of the RBB analytically.
13

Effects of Rear Bumper Beam Deletion on the Perception of Steering Performance of Commercial Vehicles

Banks, Alan J. January 2015 (has links)
In order to remain competitive in the marketplace, all motor vehicle manufacturers face difficult decisions with regard to balancing cost vs. feature. That is to say that the manufacturer must balance the cost of the product to the customer to remain competitive whilst offering appropriate technology and standard features required by that customer. All motor manufacturers are therefore under pressure to keep costs of nonfeature items to a minimum. One of the cost reductions items prevalent on most vehicles is the deletion of the structural member that attaches the rear bumper, known as the bumper beam (RBB), which is researched in this Thesis. This generates average vehicle savings of $20 and, as this is invisible to the customer, should enable the manufacturers to realise a significant saving or allow this revenue to be spent on additional feature without loss of vehicle function. However, in nearly all cases, deletion of the rear bumper beam has the effect of degrading the steering responses of the vehicle by 1 to 1½ rating points (out of 10), which is contrary to the premise of cost reductions; which is to ensure that vehicle function is unaffected. Initial analysis of vehicles with deleted rear bumper beams cannot show an objective measurable difference in any vehicle behaviours with or without the beam fitted, and hence CAE studies using ADAMS models cannot verify the effects of the bumper beam. It was necessary to employ unconventional modelling and testing methods such as rigid body, flexible body model techniques as well as experimental studies included driving robots and expert driver appraisals. The research demonstrated that vehicle modelling methods currently used, cannot establish or predict the complete vehicle ride and handling status. A total vehicle model approach should be used without separating the body CAE model and vehicle dynamics ADAMS model into separate entities. Furthermore, it was concluded that the determination to the effects of body hysteresis rather than pure stiffness is of crucial importance and that the steering attribute could be maintained with the deletion of the RBB analytically.
14

Modélisation analytique pour le dimensionnement par optimisation d’une machine dédiée à une chaîne de traction hybride à dominante électrique / Analytical modelling and design optimisation of an electric machine for a mild hybrid electric vehicle

Daguse, Benjamin 17 June 2013 (has links)
Les travaux menés au cours de cette thèse abordent les aspects de la conception optimale des machines électriques appliquées à la traction automobile.Cette thèse traite tout d’abord des contraintes imposées par le cahier des charges de l’application automobile électrique/hybride. Une méthode de classification ayant pour but de réduire le nombre d’évaluations des points de fonctionnement y est décrite. Ensuite, un prédimensionnement optimal de la machine est présenté. Le design de la machine est alors construit pour respecter la solution obtenue par le prédimensionnement.Dans la suite, une modélisation électromagnétique analytique précise et rapide de la machine est mise au point pour évaluer ses performances. Enfin, le modèle analytique précédemment conçu est couplé à une routine d’optimisation. Deux solutions optimales de machines synchrones à aimants permanents (MSAP) dédiées à l’application automobile seront finalement mises en exergue. / The work presented in this thesis aims at the modelling and optimisation of electrical machine for an automotive application.The first part shows the constraints required to electric/hybrid automotive specifications. A clustering method which allows to reduce evaluations number of the operating points is described. Next, an optimal pre-sizing of the machine is presented and designed in order to respect this optimal pre-sizing.In what follows an accurate and fast analytical electromagnetic modelling of the machine is performed. Well, the analytical modelling developed is related to a genetic algorithm. Two solutions of permanent magnet synchronous machines (PMSM) designed to automotive application are finally showed and analysed.
15

Design methodologies for heterogeneous 3-D integrated systems

Papistas, Ioannis January 2018 (has links)
Design techniques for heterogeneous three-dimensional (3-D) integrated circuits are developed in this thesis. Heterogeneous 3-D integration is a platform for multifunctional, high performance, and low power electronics. For the advancement of heterogeneous 3-D ICs, contactless solutions are investigated to implement inter-tier communication between tiers manufactured with disparate processes and heterogeneous technologies. Two challenges for the development of contactless inter-tier communication are addressed, the design of energy efficient, heterogeneous inductive link transceivers and the impact of crosstalk noise due to the on-chip spiral inductors. Inter-tier communication between circuits fabricated with disparate technologies requires transceivers capable of operating at dissimilar voltages. A low power transceiver design methodology is proposed exploiting the difference in the core voltage between disparate manufacturing processes in a 3-D system in package. A transceiver is designed to provide inter-tier communication between a sensing layer, designed in a commercial 0.35 Âμm process and a processing layer, designed in an advanced 65 nm process. A significant gain in the power consumed by the transceiver is shown compared to equivalent state-of-the-art prototypes, profiting by the tradeoff between the core voltage and sensing ability of the transceiver circuit in each process. Due to their wireless nature, however the use of inductive links introduces crosstalk noise due to the coupling between the on-chip inductor and on-chip interconnects in the vicinity of the inductor. The noise caused by the inductor on the power distribution network of an integrated system is explored, analysed, and modelled through electromagnetic simulations. The spatial distribution of the noise is described for several power distribution topologies to determine the preferred placement solution for the power and ground network in the vicinity of the inductor, considering the impact on other sources of noise, such as the resistive drop. Depending upon the power distribution network topology, the induced noise can be reduced up to 70% when the additional noise caused by the inductive link is considered by the routing algorithm. Additionally, a methodology utilising an analytic model is proposed for the evaluation of the crosstalk noise without resorting to electromagnetic simulations. A closed-form magnetostatic model is developed to assess the mutual inductance between the on-chip inductor and the power distribution network. Utilising the mutual inductance model, the crosstalk noise is evaluated with SPICE simulations. A signifcant benefit in speedup is achieved, up to four orders of magnitude for determining the mutual inductance and up to 4.7× for the assessment of the crosstalk noise. The accuracy of the model is within 10% of the electromagnetic simulation.
16

The Architectural Optimization of Stretch-formed Ceramic-aluminum Microtruss Composites

Yu, Hiu Ming (Bosco) 27 November 2012 (has links)
Microtruss cellular materials have large internal surface areas and small cross-sectional strut dimensions, permitting surface modification to substantially enhance their mechanical performance. For instance, a ~400% increase in compressive strength with virtually no weight penalty can be induced by a hard anodized Al2O3 ceramic coating of only ~50 µm thickness. The present study seeks the optimal architecture of these composites by exploring three research challenges: architecture and degree of forming are interdependent due to stretch-forming, architecture and the material properties are interdependent due to work-hardening, and ceramic structural coatings add design complexity. Theoretical predictions and architectural optimizations demonstrated a potential weight reduction of ~3% to ~60% through the increase of internal truss angle for both annealed and work-hardened microtruss cores. While further validation is needed, experimental evidence in this study suggested the collapse in ceramic-aluminum microtruss composites could be considered as a mixture of composite strut global buckling and oxide local shell buckling mechanisms.
17

The Architectural Optimization of Stretch-formed Ceramic-aluminum Microtruss Composites

Yu, Hiu Ming (Bosco) 27 November 2012 (has links)
Microtruss cellular materials have large internal surface areas and small cross-sectional strut dimensions, permitting surface modification to substantially enhance their mechanical performance. For instance, a ~400% increase in compressive strength with virtually no weight penalty can be induced by a hard anodized Al2O3 ceramic coating of only ~50 µm thickness. The present study seeks the optimal architecture of these composites by exploring three research challenges: architecture and degree of forming are interdependent due to stretch-forming, architecture and the material properties are interdependent due to work-hardening, and ceramic structural coatings add design complexity. Theoretical predictions and architectural optimizations demonstrated a potential weight reduction of ~3% to ~60% through the increase of internal truss angle for both annealed and work-hardened microtruss cores. While further validation is needed, experimental evidence in this study suggested the collapse in ceramic-aluminum microtruss composites could be considered as a mixture of composite strut global buckling and oxide local shell buckling mechanisms.
18

Etude aéroacoustique de configurations génériques de dispositifs hypersustentateurs : approches analytique et expérimentale

Lemoine, Benoît 24 January 2013 (has links)
Depuis plusieurs décennies, le trafic aérien ne cesse de croître. Ainsi, près de 6 milliards de passagers transitent dans le monde par an. Les objectifs européens à l’horizon 2020 en terme d’émission sonore des aéronefs imposent une réduction de 10 dB par point de mesure par rapport aux aéronefs de l’an 2000. Dans ce contexte, le projet européen VALIANT (VALidation and Improvement of Airframe Noise prediction Tools) a pour but principal de tester, valider et améliorer les codes numériques et les modèles de prédiction du bruit de cellule (trains d’atterrissage + voilure) sur des géométries simplifiées afin de disposer de cas tests pour les recherches futures. L’objectif de la thèse, associé à la contribution de l’ECL dans ce projet, est de créer des bases de données expérimentales fiables sur des systèmes à deux éléments – bec/aile et aile/volet – et de modéliser analytiquement le bruit issu de tels systèmes. La thèse s’est concentrée sur un système aile/volet non porteur et parallèle dans un écoulement de soufflerie à veine ouverte, en configuration d’alignement ou de recouvrement partiel, menant à de possibles interactions aérodynamiques et/ou acoustiques. Les mesures ont été faites pour différentes vitesses d’écoulement (30 − 100 m~s), avec une attention particulière à 50 m~s (M0 ∼ 0, 15). Le taux de turbulence de l’écoulement incident est modifiable par l’ajout d’une grille de turbulence à maille large placée dans la section de sortie du convergent. Les résultats aérodynamiques (fil chaud, pression en paroi) ont révélé la présence d’une forte interaction lorsque la distance entre les deux corps est de l’ordre de grandeur de la couche limite turbulente au bord de fuite de l’aile. De plus, le couplage acoustique a lieu lorsque la longueur de recouvrement est positive ou nulle. Des mesures de localisation de sources menées par l’ONERA/DSNA ont permis de valider les mesures de champ lointain en confirmant l’absence de sources de bruit d’installation en dessous de 10 kHz. Par ailleurs, des comparaisons avec les simulations numériques donnent de bons accords. Du point de vue analytique, le problème mathématique de deux plaques planes en recouvrement partiel dans un écoulement uniforme a été posé et une réduction bidimensionnelle a été justifiée. Le problème n’ayant pas de solution exacte, plusieurs modèles issus de la littérature – théories de Howe et d’Amiet – ont été étudiés. Les plus pertinents ont été confrontés aux résultats expérimentaux, révélant les limites asymptotiques de ces modèles. Un modèle original est alors proposé pour la géométrie du problème posé, sans hypothèse restrictive. La démarche est basée sur une procédure de diffraction itérative permettant de prendre en compte la proximité des deux corps et utilisant la fonction de Green exacte du demi-plan en écoulement uniforme. Le modèle prédit des comportements qualitatifs angle/fréquence proches des résultats expérimentaux. La prise en compte de la statistique des rafales incidentes reste néanmoins à effectuer afin de procéder à des comparaisons quantitatives. Une campagne expérimentale complémentaire avec une marche descendante permet de mettre en évidence les écoulements de cavité arrière d’une aile, plus proche de la réalité. De même, des mesures sur une configuration bec/aile a été testée et la prise en compte de la déflexion du jet de la soufflerie pour la réfraction des ondes sonores par la couche de cisaillement a été proposée. / Air traffic still grows from decades, with yearly 6 billion passengers nowadays in the world. By 2020, the EC imposes aircraft noise reductions by 10 dB per measuring point with respect to the status in 2000. In this context, VALIANT (VALidation and Improvement of Airframe Noise prediction Tools) is an EC-supported project that aims at testing, validating and improving numerical codes and analytical/theoretical models for the prediction of airframe noise (landing gears + high-lift devices) in simplified configurations in order to generate test cases for research needs. The main objective of the thesis in connection with ECL contribution in the scope of VALIANT project is to generate reliable experimental databases for 2-element systems – slatwing and wing-flap – as well as to analytically model overlapping configurations. It is particulary focussed on the experimental and analytical studies of a non lifting wing-flap system in a parallel flow, in aligned and overlapping arrangements. This is aimed at discussing likely aerodynamic and/or acoustic interactions. The tests have been carried out in an open-jet anechoic wind-tunnel for each arrangement and for several flow speeds (30-100 m/s), with main interest on 50 m/s (M0 ∼ 0, 15). The turbulence rate could be changed by fixing a removable turbulence grid with a large mesh at the outlet cross-section of the duct. Aerodynamic results (hot-wire anemometry, wall-pressure) show a strong interaction when the wing-flap distance is about the wing trailingedge boundary layer thickness. Acoustic coupling can be pointed out in cases of overlap. Source localization tests performed by ONERA/DSNA have permitted to validate far-field acoustic tests since no installation effect source seems to strongly radiate below 10 kHz. A good agreement with numerical simulations has been shown for every test. In order to predict noise analytically for a 2-element system in case of overlap in a uniform flow, the mathematical statement has been defined and a 2D-reduction of the equation system can be justified. Since no exact solution exists, several models from the literature – Howe’s and Amiet’s theories – have been studied. Comparisons between overlapping half-planes and slotted trailing-edge models proposed by Howe and experimental results show obvious limitations in the predictions. Then, an original model is proposed involving two bodies in close overlap arrangement, with no assumption. It is based on an iterative scattering procedure to take into account the close vicinity of the two bodies, using the exact half-plane Green’s function in a uniform flow. Convergence is relatively quick and qualitative predictions in angle/frequency behaviour show a good agreement with experiments. However, the statistics of the vortical flows responsible for the sound must be implemented for better comparisons. Other experiments have been done with a backward-facing step – it represents wing trailing-edge cove – to make cavity flow mechanisms appear, such as what is observed in real HLD. Finally, a series of tests has been performed involving a slat-wing system and an angular correction due to refraction of sound waves in shear-layer for a deflected jet has been proposed.
19

Comportement au fluage de poutres hétérogènes bois-BFUP assemblées par collage / Creep behaviour of heterogeneous glulam-UHPFRC beams assembled by bonding

Kong, Kanhchana 15 September 2015 (has links)
Ce travail de recherche vise à évaluer le comportement au fluage de nouvelles structures composites en associant trois matériaux: le bois, le béton fibré ultra-haute performance (BFUP) et des armatures polymères renforcées de fibres de carbone (PRFC). Le but de la conception d'une telle section hybride est de faire usage des meilleures caractéristiques de chaque matériau afin d'augmenter sa capacité portante à l'ultime et/ou en service. Aussi, d'un point de vue du comportement mécanique, cette solution de renforcement vise à apprécier et hiérarchiser l'intérêt d'une telle solution liée aux effets déférés, particulièrement au fluage. La première étape consiste à mener une analyse expérimentale sur le comportement en statique de poutres hétérogènes bois-BFUP. Elle est exécutée afin de mieux comprendre le mécanisme d'endommagement ainsi que la performance pour définir le comportement au fluage. Pour cela, une campagne expérimentale en flexion quatre points portant sur trois poutres, dont une poutre témoin, a été conduite sous sollicitation statique. Les résultats obtenus confirment que les poutres hétérogènes Bois-BFUP apportent une optimisation de capacité portante ainsi que de la rigidité. Les poutres hybrides ont permis d'obtenir le même mode de rupture en flexion et la première rupture s'est produite dans la partie comprimée de BFUP supérieur. La seconde partie de la recherche est consacrée à l'analyse du comportement au fluage de poutres hétérogènes bois-BFUP nécessaire pour prédire les déformations à long terme dans des structures composites hybrides. Dans cette étude, deux types d'essai ont été réalisés : essai en environnement contrôlé et essai en environnement non contrôlé (extérieur). En environnement contrôlé les essais fluage ont commencé sous une charge constante de 24 kN dans le laboratoire avec des températures de 20±5 °C et une humidité relative entre 40% et 60%. Ces conditions climatiques peuvent être considérées comme un environnement de classe 1, conformément à l'Eurocode 5. Les résultats ont montré que la flèche de fluage de la poutre renforcée augmente peu tout au long de l'essai. A l'inverse de ces résultats, l'essai de fluage en environnement variable à l'extérieur du laboratoire, qui peut être considéré comme environnement de classe 3 suivant l'Eurocode 5, montre que les effets différés du bois et du béton jouent un rôle très important dans l'évolution de la flèche finale / This dissertation aims to evaluate the creep behaviour of a new composite structure combined three materials: the wood, the ultra-high performance fibre-reinforced concrete (UHPFRC) and the polymer fibre reinforced carbon (CFRP) according to their advantages and performances. The conception of such hybrid section is to use the best characteristics of each material to increase its bearing capacity in the ultimate and / or in service. Furthermore, from the point of view of design, this strengthening solution is to assess and prioritize the interests to reduce the deformation caused by the delayed effects, particularly caused by creep. The first part investigated an experimental analysis of the static behaviour of the wood-UHPFRC beam, and should be performed to understand the mechanism of the hybrid beam as well as the performance which are the directions to identify the creep behaviour. A four-points bending test setup on three beams, one beam witness, was conducted under static loading. The results confirm that heterogeneous Timber-UHPFRC beams provide an optimization of bearing capacity and stiffness. The hybrid beams have produced the same flexural mode of failure and the first crack occurred in the upper part of compressed UHPFRC. The second part of the research is devoted to the analysis of creep behaviour of heterogeneous wood beams UHPC necessary to predict long-term deformations in composite structures. In this study, two types of test setups were conducted: test in a sheltered and outdoor environment. In the sheltered environment, the creep test began under a constant load of 24 kN in the laboratory with temperatures of 20 ± 5 °C and a relative humidity between 40% and 60%. These climatic conditions can be considered as the service class 1, according to Eurocode 5. The results showed that the creep deflection of the reinforced beam gradually increases throughout the test. Unlike these results, the creep test in a variable environment outside the laboratory, which can be considered Class Service 3 to Eurocode 5, shows that the effect of time dependency behaviour of wood and concrete plays a very important role in the evolution of the creep deflection of the hybrid beams
20

Qualitative failure analysis on laminate structures of windsurfing boards using analytical linear elastic modelling

Schwarzer, Norbert, Heuer-Schwarzer, Peggy 07 February 2006 (has links)
Recently developed mathematical tools for the modelling of contact problems on thin film structures are adapted to allow the investigation of arbitrarily mixed purely isotropic and transversally isotropic laminate structures. The new tool is applied to model a variety of load problems resulting in the failure of windsurfing boards consisting of a relatively thin laminate shell and a soft polymer foam core. It is shown that local impact and distributed bending loads due to “bad landing” after high jumps or contact with parts of the sailing gear (the so called rig) especially the front part of the boom are leading to the most critical stress distributions resulting in failure. So most of the investigated boards were damaged because the rider (windsurfer) landed flat and thus produced a sudden impact force under his feet (impact defect). Other overloading occurred due to overturning of so called loop movements or the landing of the board exactly on respectively between two waves and this way producing high bending moments. Some of those typical loads are analysed in detail and the stresses occurring in the complex structure of the windsurfing boards are evaluated.

Page generated in 0.0918 seconds