Spelling suggestions: "subject:"anda sentiment analysis."" "subject:"ando sentiment analysis.""
141 |
Predicting Bitcoin price fluctuation with Twitter sentiment analysis / Förutspå Bitcoin prisändringar med hjälp av semantisk analys på Twitter dataStenqvist, Evita, Lönnö, Jacob January 2017 (has links)
Programmatically deriving sentiment has been the topic of many a thesis: it’s application in analyzing 140 character sentences, to that of 400-word Hemingway sentences; the methods ranging from naive rule based checks, to deeply layered neural networks. Unsurprisingly, sentiment analysis has been used to gain useful insight across industries, most notably in digital marketing and financial analysis. An advancement seemingly more excitable to the mainstream, Bitcoin, has risen in number of Google searches by three-folds since the beginning of this year alone, not unlike it’s exchange rate. The decentralized cryptocurrency, arguably, by design, a pure free market commodity – and as such, public perception bears the weight in Bitcoins monetary valuation. This thesis looks toward these public perceptions, by analyzing 2.27 million Bitcoin-related tweets for sentiment fluctuations that could indicate a price change in the near future. This is done by a naive method of solely attributing rise or fall based on the severity of aggregated Twitter sentiment change over periods ranging between 5 minutes and 4 hours, and then shifting these predictions forward in time 1, 2, 3 or 4 time periods to indicate the corresponding BTC interval time. The prediction model evaluation showed that aggregating tweet sentiments over a 30 min period with 4 shifts forward, and a sentiment change threshold of 2.2%, yielded a 79% accuracy. / Ämnet sentiment analysis, att programmatiskt härleda underliggande känslor i text, ligger som grund för många avhandlingar: hur det tillämpas bäst på 140 teckens meningar såväl som på 400-ords meningar a’la Hemingway, metoderna sträcker sig ifrån naiva, regelbaserade, till neurala nätverk. Givetvis sträcker sig intresset för sentiment analys utanför forskningsvärlden för att ta fram insikter i en rad branscher, men framförallt i digital marknadsföring och financiell analys. Sedan början på året har den digitala valutan Bitcoin stigit trefaldigt i sökningar på Google, likt priset på valutan. Då Bitcoins decentraliserade design är helt transparant och oreglerad, verkar den under ideala marknadsekonomiska förutsättningar. På så vis regleras Bitcoins monetära värde av marknadens uppfattning av värdet. Denna avhandling tittar på hur offentliga uppfattningar påverkar Bitcoins pris. Genom att analysera 2,27 miljoner Bitcoin-relaterade tweets för sentiment ändringar, föutspåddes ändringar i Bitcoins pris under begränsade förhållningar. Priset förespåddes att gå upp eller ner beroende på graden av sentiment ändring under en tidsperiod, de testade tidsperioderna låg emellan 5 minuter till 4 timmar. Om en förutspånning görs för en tidsperiod, prövas den emot 1, 2, 3 och 4 skiftningar framåt i tiden för att ange förutspådd Bitcoin pris interval. Utvärderingen av förutspåningar visade att aggregerade tweet-sentiment över en 30-minutersperiod med 4 skift framåt och ett tröskelvärde för förändring av sentimentet på 2,2 % gav ett resultat med 79 % noggrannhet.
|
142 |
A Performance Survey of Text-Based Sentiment Analysis Methods for Automating Usability EvaluationsVan Damme, Kelsi 01 June 2021 (has links) (PDF)
Usability testing, or user experience (UX) testing, is increasingly recognized as an important part of the user interface design process. However, evaluating usability tests can be expensive in terms of time and resources and can lack consistency between human evaluators. This makes automation an appealing expansion or alternative to conventional usability techniques.
Early usability automation focused on evaluating human behavior through quantitative metrics but the explosion of opinion mining and sentiment analysis applications in recent decades has led to exciting new possibilities for usability evaluation methods.
This paper presents a survey of modern, open-source sentiment analyzers’ usefulness in extracting and correctly identifying moments of semantic significance in the context of recorded mock usability evaluations. Though our results did not find a text-based sentiment analyzer that could correctly parse moments as well as human evaluators, one analyzer was found to be able to parse positive moments found through audio-only cues as well as human evaluators. Further research into adjusting settings on current sentiment analyzers for usability evaluations and using multimodal tools instead of text-based analyzers could produce valuable tools for usability evaluations when used in conjunction with human evaluators.
|
143 |
Designing and evaluating an algorithm to pick out minority comments onlineLiu, Elin January 2022 (has links)
Social media and online discussion forums have allowed people to hide behind a veil of anonymity, which has made the platforms feel unsafe for people with a different opinion than the majority. Recent research on robots and bots have found that they are a good option when it comes to inducing cooperation or acting as a conversation partner to encourage critical thinking. These robots and bots are based on an algorithm that is able to identify and classify comments, usually into positive and negative comments, left by users. The problem attended to in this thesis is to explore the possibility of creating an algorithm that can classify and pick out a minority opinion with an accuracy of at least 90%. The purpose is to create one of the vital algorithms for a larger project. The goal of this thesis is to provide a functioning algorithm with an accuracy of at least 90% for future implementations. In this thesis, the research approach is quantitative. The results show that it is possible to create an algorithm with the ability to classify and identify comments that also can pick out a minority opinion. Furthermore, the algorithm also achieved an accuracy of at least 90% when it comes to classification of comments, which makes the search for a minority opinion much easier. / Sociala medier och diskussionsforum online har tillåtit människor att gömma sig bakom sin datorskärm och vara anonym. Detta har gjort sociala medier till en osäker plats för människor som inte delar samma åsikt som majoriteten om olika diskussionsämnen. Ny forskning om robotar och sociala botar har funnit att dem är effektiva med att få människor att samarbeta samt att dem är en bra konversationspartner som framkallar mer kritiskt tänkande. Dessa robotar och sociala botar är baserade på en algoritm som kan identifiera och klassificera kommentarer, oftast till positiva eller negativa kommentarer som användare av sociala medier har lämnat. Problemet som avhandlingen försöker lösa är om det är möjligt att skapa en algoritm som kan identifiera och klassificera kommentarer, men även hitta och ta fram en åsikt som inte är en del av majoriteten med en träffsäkerhet på minst 90%. Ändamålet är att skapa en viktig byggsten för ett större forskningsprojekt. Målet med avhandlingen är att skapa en funktionerande algoritm för framtida undersökning som förhoppningsvis kan motarbeta partiskhet i sociala medier. Avhandlingens ståndpunkt är kvantitativ. Resultaten från avhandlingen visar att det är möjligt att skapa en algoritm som kan klassificera samt hitta en åsikt som inte är en del av majoriteten. Dessutom har algoritmen hög noggrannhet när det gäller klassificeringen vilket underlättar sökandet av en åsikt.
|
144 |
Sentiment-Driven Cryptocurrency Price Prediction : A Comparative Analysis of AI ModelsKotapati, Jammithri, Vendrapu, Suma January 2023 (has links)
Background: In the last few years, there has been rapid growth in the use of cryptocurrency, as it is a form of digital currency and was developed using blockchain technology, so it is almost impossible to counterfeit cryptocurrency. Due to these features, it has attracted a lot of popularity and attention in the market. There has been a research gap in predicting accurate cryptocurrency prices by using sentiment analysis. This study will use Artificial Intelligence-based methods and sentiment analysis to develop a model for predicting cryptocurrency prices. By using the mentioned methods in this thesis, the developed model will provide precise results. Objectives: The objective of the thesis is to compare artificial intelligence models for cryptocurrency price prediction and analyze the importance of sentiment analysis by understanding the public pulse in cryptocurrencies and how it affects price fluctuations, analyzing the correlation within news articles, social media posts, and price fluctuations, as well as evaluating the model performance by employing metrics like RSME, MSE, MAE, and R2 error. Methods: The thesis follows the use of a systematic literature review along with an experimental model for comparing artificial intelligence models. Sentiment analysis played a crucial role in understanding market dynamics. By using linear regression, random forest, and gradient boosting algorithms artificial intelligence models are built to predict cryptocurrency prices using sentiment analysis. The developed models are then compared using performance metrics. This research has analyzed and evaluated each model's performance in predicting cryptocurrency prices. Results: The results of the systematic literature review indicated that market sentiment affects cryptocurrency prices. Prices have increased when market sentiment has been positive, whereas prices dropped when sentiment has been negative. The correlation between cryptocurrency values and market mood, however, is complicated as it depends on a variety of factors. Based on the evaluation measures, the random forest artificial intelligence model is the most accurate in predicting cryptocurrency prices after evaluating the three artificial intelligence models. Conclusions: This study utilized sentiment analysis and artificial intelligence to forecast cryptocurrency prices. It highlighted the significance of sentiment analysis as a tool for predicting the short-term price of cryptocurrencies by demonstrating how negative sentiment is correlated with decreases in price compared to positive sentiment with price increases. However, it recognized that it was necessary to take into consideration the complexity and broad range of effects on cryptocurrency markets. Research in the future will examine comprehensive sentiment analysis methods and broadening data sources.
|
145 |
Joint Dynamic Online Social Network Analytics Using Network, Content and User CharacteristicsRuan, Yiye 18 May 2015 (has links)
No description available.
|
146 |
Linguistic Approach to Information Extraction and Sentiment Analysis on TwitterNepal, Srijan 11 October 2012 (has links)
No description available.
|
147 |
Sentiment Analysis On Java Source Code In Large Software RepositoriesSinha, Vinayak 02 June 2016 (has links)
No description available.
|
148 |
Approaches to Automatically Constructing Polarity Lexicons for Sentiment Analysis on Social NetworksKhuc, Vinh Ngoc 16 August 2012 (has links)
No description available.
|
149 |
Investigating MOOCs with the use of sentiment analysis of learners' feedback. What makes great MOOCs across different domains?Nefedova, Natalia January 2022 (has links)
Recently, distance education has become popular and has gotten much attention. Information and Communication Technology advances fostered distance learning creation and enabled individuals to participate in the education process via various web-based platforms and study entirely online. Thus, the notion of e-learning and distance learning emerged. Massive Open Online Courses (MOOCs) appeared as part of e-learning in 2008 and attracted great interest, especially during the COVID-19 pandemic. It was anticipated that this kind of study also could be integrated into higher education and revolutionize the learning approach. However, several issues related to MOOCs limit their full potential. One of the most significant problems is substantial rate of learners’ attrition. It was discovered that only 5-10 percent of MOOC learners complete a course. This thesis aims to examine what influences individuals’ decision to leave MOOCs and how learners perceive various course components to get ideas regarding how MOOCs could be enhanced. To do this, the mixed-method study was undertaken where quantitative data analysis of learners’ reviews from discussion forums and qualitative interviews were adopted. It allowed to get two perspectives and broaden the thesis out- come. For the current research, data was collected from six courses in three different subjects-«Health», «Art and Humanity/Design» and «Computer/Data Science». In the first part of the work, sentiment analysis and topic modeling using Python packages were carried out, and then the results were used to construct an interview questionnaire. Lexicon-based sentiment analysis technique and LDA topic modeling algorithm were utilized and proved to be robust methods to extract texts’ polarity and peoples’ opinions. In the qualitative part, 19 topics of discussion were identified, which were consolidated into eight topics with higher abstraction – materials, instructor, content, time, assignment, feedback, program(course), and algorithms. Then during the qualitative part, participants expressed their opinions regarding these topics, and analysis codes were predefined, and new topics did not emerge. The results showed learners’ perceptions related to presented topics and how these aspects influence experience with MOOCs. The outcome also showed a slight disparity between different subject learners, in both qualitative and quantitative studies identified topics of discussion were not exactly the same, showing that learners from different educational domains tend to discuss different themes.
|
150 |
Using sentiment analysis to craft a narrative of the COVID-19 pandemic from the perspective of social mediaRay, Taylor Breanna 06 August 2021 (has links)
Throughout the COVID-19 pandemic, people have turned to social media to share their experiences with the coronavirus and their feelings regarding subjects like social distancing, mask-wearing, COVID-19 vaccines, and other related topics. The publicly available nature of these social media posts provides researchers the chance to obtain a consensus on an array of issues, topics, people, and entities. For the COVID-19 pandemic, this is valuable information that can prepare communities and governing bodies for future epidemics or events of a similar magnitude. However, clearly defining such a consensus can be difficult, especially if researchers want to limit the amount of bias they introduce. The process of sentiment analysis helps to address this need by categorizing text sources into one of three distinct polarities. Namely, those polarities are often positive, neutral, and negative. While sentiment analysis can take form as a completely manual task, this becomes incredibly burdensome for projects that involve substantial amounts of data. This thesis attempts to overcome this challenge by programmatically classifying the sentiment of COVID-19 posts from 10 social media and web-based forums using a multinomial Naive Bayes classifier. The unique and contrasting qualities of the social networks being analyzed provide a robust take on the public's perception of the pandemic that has not yet been offered up to the present.
|
Page generated in 0.0976 seconds