• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1007
  • 324
  • 265
  • 115
  • 89
  • 75
  • 61
  • 26
  • 26
  • 26
  • 26
  • 26
  • 26
  • 21
  • 17
  • Tagged with
  • 2378
  • 473
  • 399
  • 277
  • 243
  • 237
  • 186
  • 178
  • 142
  • 139
  • 136
  • 129
  • 103
  • 102
  • 101
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Sur les mouvements homographiques de N corps associés à des masses de signe quelconque, le cas particulier où la somme des masses est nulle, et une application à la recherche de chorégraphies perverses.

Celli, Martin 26 September 2005 (has links) (PDF)
Cette thèse a été préparée à l'Institut de Mécanique Céleste et de Calcul des Ephémérides de l'Observatoire de Paris, de septembre 2001 à avril 2005, sous la direction de MM. Alain Chenciner et Alain Albouy. Elle traite du problème des N corps, qui consiste en l'étude des solutions des équations de Newton. Celles-ci décrivent le mouvement de N particules ponctuelles en interaction gravitationnelle. Cette thèse a plus précisément pour objet l'étude des solutions homographiques (les rapports entre les distances mutuelles sont constants) associées à des masses de signe quelconque. On étudie le cas des mouvements rigides (les distances mutuelles sont constantes). Ce problème est plus difficile que le problème à masses positives, car il n'est plus possible d'associer un produit scalaire aux masses.<br /><br />On s'intéresse au cas où la somme des masses est nulle. Le centre d'inertie devient alors un vecteur, invariant par translation. Ceci rend les équations de Newton "plus intégrables". Ainsi, sous une hypothèse sur les vitesses initiales, le problème colinéaire des trois corps devient intégrable. Cette propriété permet de calculer les configurations centrales (configurations qui engendrent un effondrement homothétique sur un centre) pour des masses x, -x, y, -y.<br /><br />On applique une propriété des équilibres absolus à somme des masses nulle au problème des chorégraphies. Une chorégraphie est une solution dans laquelle les corps se suivent sur la même courbe avec des intervalles de temps égaux. On montre que, pour le potentiel logarithmique, les masses d'une chorégraphie sont nécessairement égales.
152

Some distributional solutions of the CH, DP and CH2 equations and the Lax pair formalism

Mohajer, Keivan 18 September 2008
This dissertation deals with a class of nonlinear wave equations of the type discovered by R. Camassa and D. D. Holm which includes the Camassa-Holm, the Degasperis-Procesi, and the two component Camassa-Holm equations. All these equations admit certain non-smooth soliton-like solutions, called peakons as well as other non-smooth solutions like cuspons. We apply the techniques of the theory of distributions of L. Schwartz to study these solutions. In particular, every non-smooth traveling wave which is a distributional solution of the two component Camassa-Holm equation is a distributional solution of the Camassa-Holm equation if the set of points where the height of the wave equals its speed, is of measure zero. This includes peakon or cuspon traveling wave solutions.<p>We also develop a suitable modification of the classical Lax pair formalism to deal with singular solutions. We show that the Lax pair formalism can be extended to a distributional weak Lax pair which is appropriate for dealing with the peakon solutions of the Camassa-Holm equation.
153

Some distributional solutions of the CH, DP and CH2 equations and the Lax pair formalism

Mohajer, Keivan 18 September 2008 (has links)
This dissertation deals with a class of nonlinear wave equations of the type discovered by R. Camassa and D. D. Holm which includes the Camassa-Holm, the Degasperis-Procesi, and the two component Camassa-Holm equations. All these equations admit certain non-smooth soliton-like solutions, called peakons as well as other non-smooth solutions like cuspons. We apply the techniques of the theory of distributions of L. Schwartz to study these solutions. In particular, every non-smooth traveling wave which is a distributional solution of the two component Camassa-Holm equation is a distributional solution of the Camassa-Holm equation if the set of points where the height of the wave equals its speed, is of measure zero. This includes peakon or cuspon traveling wave solutions.<p>We also develop a suitable modification of the classical Lax pair formalism to deal with singular solutions. We show that the Lax pair formalism can be extended to a distributional weak Lax pair which is appropriate for dealing with the peakon solutions of the Camassa-Holm equation.
154

Self-diffusion studies in polymer-solvent systems by pulsed-gradient spin-echo nuclear magnetic resonance

Waggoner, Roy Allen, January 1993 (has links) (PDF)
Thesis (Ph. D.)--University of Missouri--Rolla, 1993. / Vita. The entire thesis text is included in file. Title from title screen of thesis/dissertation PDF file (viewed January 25, 2010) Includes bibliographical references (p. 150-155).
155

Polyelectrolytes in analytical separations

Howell, Peter B. Schlenoff, Joseph B. January 2002 (has links)
Thesis (Ph. D.)--Florida State University, 2002. / Advisor: Dr. Joseph B. Schlenoff, Florida State University, College of Arts and Sciences, Dept. of Chemistry. Title and description from dissertation home page (viewed Sept. 29, 2003). Includes bibliographical references.
156

Uniqueness and existence results on viscosity solutions of some free boundary problems

Kim, Christina. January 2002 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2002. / Vita. Includes bibliographical references. Available also from UMI Company.
157

Solution for metal extrusion by ideal stress and strain fields.

Cheung, Tak-kin. January 1971 (has links)
Thesis--M. Sc.(Eng.), University of Hong Kong. / Mimeographed.
158

The De Giorgi's method as applied to the regularity theory for incompressible Navier-Stokes equations

Chan, Chi Hin, 1979- 20 September 2012 (has links)
The first part of this thesis is devoted to a regularity criterion for solutions of the Incompressible Navier-Stokes equations in terms of regularity of the solutions along the streamlines. More precisely, we prove that we can ensure the full regularity of a given suitable weak solution provided we have good control on the second derivative of the velocity along the direction of the streamlines of the fluid. In the second part of this thesis, we will show that the global regularity of a suitable weak solution u for the incompressible Navier-Stokes equations holds under the condition that [mathematical equation] is integrable in space time variables. / text
159

Singular limits of reaction diffusion equations of KPP type in an infinite cylinder

Carreón, Fernando 28 August 2008 (has links)
In this thesis, we establish the asymptotic analysis of the singularly perturbed reaction diffusion equation [cataloger unable to transcribe mathematical equations].... Our results establish the specific dependency on the coefficients of this equation and the size of the parameter [delta] with respect to [epsilon]. The analyses include equation subject to Dirichlet and Neumann boundary conditions. In both cases, the solutions u[superscript epsilon] converge locally uniformally to the equilibria of the reaction term f. We characterize the limiting behavior of the solutions through the viscosity solution of a variational inequality. To construct the coefficients defining the variational inequality, we apply concepts developed for the homogenization of elliptic operators. In chapter two, we derive the convergence results in the Neumann case. The third chapter is dedicated to the analysis of the Dirichlet case. / text
160

Least supersolution approach to regularizing elliptic free boundary problems

Moreira, Diego Ribeiro, 1977- 28 August 2008 (has links)
In this dissertation, we study a free boundary problem obtained as a limit as [epsilon omplies 0] to the following regularizing family of semilinear equations [Delta]u = [Beta subscript epsilon](u)F([gradient]u), where [Beta subscript epsilon] approximates the Dirac delta in the origin and F is a Lipschitz function bounded away from 0 and infinity. The least supersolution approach is used to construct solutions satisfying geometric properties of the level surfaces that are uniform. This allows to prove that the free boundary of the limit has the "right" weak geometry, in the measure theoretical sense. By the construction of some barriers with curvature, the classification of global profiles for the blow-up analysis is carried out and the limit function is proven to be a viscosity and pointwise solution (a.e) to a free boundary problem. Finally, the free boundary is proven to be a C[superscript 1, alpha] surface around H[superscript n-1] a.e. point.

Page generated in 0.1013 seconds