• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Auswertung von Gefäßstrukturen in Laserscanning-Volumendaten

Metz, Lars Heinz-Werner, Winter, Karsten 20 October 2017 (has links)
Inhalt der vorliegenden Arbeit ist die Vorstellung einer bildanalytischen Methodik zur räumlich bezogenen Quantifizierung morphologischer und topologischer Reifungsparameter von in vitro gewachsenem Fettgewebe. Diese Reifungsparameter sollen später Rückschlüsse auf die am Gewebewachstum beteiligten Wachstumsparameter im Hinblick auf deren Optimierung erlauben und somit als Grundlage einer qualitativen Analyse des Gewebes für die plastisch rekonstruktive Chirurgie dienen. Die Berechnung der einzelnen Reifungsparameter erfolgt im Rahmen einer Bildverarbeitungskette. Diese umfasst die Glättung und Ausheilung der aus dem Gewebe gewonnenen Volumendatensätze mittels eines gekoppelten anisotropen nichtlinearen Reaktionsdiffusionssystems, die Ermittlung des Bedeckungsgrades der kapillaren Strukturen mit Muskelzellen, die Berechnung der Kompaktheit, eine Skelettierung der Volumendatensätze und die Vektorisierung des entstandenen Skelettes. Anhand von Beispielen wird die Wirkungsweise sowohl der einzelnen Bildverarbeitungsschritte als auch der gesamten Bildverarbeitungskette dargestellt. Die Oberfläche der Blutgefäße des Gewebes und deren Skelett werden zum besseren Verständnis der extrahierten Reifungsparameter visualisiert. Eine statistische Auswertung der gewonnenen Reifungsparameter soll Informationen zur Verbesserung der Oxygenierungs- und Ernährungssituation des in vitro gewachsenen Gewebes liefern. Abschließend werden Ergebnisse der Analyse von Volumendatensätzen und des Vergleichs zur bisherigen Messmethode vorgestellt und diskutiert.
2

Colloidal self-assembly of anisotropic gold nanoparticles / Kolloidal självsammansättning av anisotropa guldnanopartiklar

Emilsson, Samuel January 2020 (has links)
The colloidal self-assembly of plasmonic gold nanoparticles (AuNPs) is of interest to utilize the plasmonic coupling effects that arise between nanoparticles. The enhanced properties of anisotropic AuNPs make them particularly attractive in self-assemblies. Herein, a literature study into the different strategies used to obtain self-assemblies of AuNPs using molecular linkers is presented. The use of nanospheres (AuNS) and nanorods (AuNRs) were mainly reviewed. Thereafter, two different nanobipyramids (AuBPs) were investigated for use in self-assemblies. The concentration of cetyltrimethylammonium bromide (CTAB), which coats the AuNP surface, was manipulated to study the stability of the AuNPs. A stable, meta-stable and non-stable region were identified for the nanoparticles. At low CTAB levels, the AuNPs preferentially assemble end-to-end. The addition of L-cysteine to stable AuNP dispersion induced end-to-end assembly, showing promise as a molecular linker for AuBPs. The addition of excess CTAB stabilized the assemblies over time. The kinetic behaviour of the two AuBPs differed, suggesting the effect of the AuNP shape on the self-assembly kinetics. This study provides a starting point for the development of a robust self-assembly strategy for anisotropic AuNPs by using L-cysteine as a molecular linker. / Den kolloidala självsammansättningen av ytplasmoniska guld nanopartiklar (AuNPs) är av intresse för att utnyttja de plasmoniska kopplingseffekterna som uppstår mellan nanopartiklar. De fördelaktiga egenskaperna hos anisotropa AuNP gör dem särskilt intressanta för självsammansättningar. En litteraturstudie har gjorts på de olika strategier som används för att erhålla självsammansättningar av AuNPs med hjälp av molekylära länkar. Användningen av nanosfärer (AuNS) och nanostavar (AuNRs) i självsammansättningar undesöktes huvudsakligen. Därefter undersöktes två olika nanobipyramider (AuBPs) för användning i självsammansättningar. Koncentrationen av cetyltrimetylammonium bromid (CTAB), som täcker AuNP-ytan, manipulerades för att undersöka AuNPs stabilitet. En stabil, meta-stabil och instabil region identifierades för nanopartiklarna. Vid låga CTAB-nivåer sammansätts AuNPs ände-mot-ände. Tillsatsen av L-cystein till stabila AuNP dispersioner inducerade sammansättningar ände-mot-ände, vilket visar L-cysteins potential som en molekylär länk för AuBPs. Tillsatsen av en stor mängd CTAB stabiliserade självsammansättningarna för en längre tid. Det kinetiska beteendet hos de två AuBPs skilde sig, vilket tyder på effekten av AuNP-formen på den självsammansättningskinetiken. Denna studie erbjuder en startpunkt för utvecklingen av en robust självsammansättningstrategi för anisotropa AuNPs genom att använda L-cystein som en molekylär länk.
3

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers / Fehleranalysis der Galerkin FEM in L2-basierten Normen für Probleme mit Grenzschichten

Schopf, Martin 20 May 2014 (has links) (PDF)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.
4

Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancing

Schopf, Martin 07 May 2014 (has links)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions: 1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm? 2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm? In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm. These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature. In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity. In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings. In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates. In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation 1 Introduction 2 Galerkin FEM error estimation in weak norms 2.1 Reaction-diffusion problems 2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition 2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 2.3.1 Weakly imposed characteristic boundary conditions 2.4 Numerical experiments 2.4.1 A reaction-diffusion problem with boundary layers 2.4.2 A reaction-diffusion problem with an interior layer 2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition 2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers 3 Macro-interpolation on tensor product meshes 3.1 Introduction 3.2 Univariate C1-P2 macro-element interpolation 3.3 C1-Q2 macro-element interpolation on tensor product meshes 3.4 A theory on anisotropic macro-element interpolation 3.5 C1 macro-interpolation on anisotropic tensor product meshes 3.5.1 A reduced macro-element interpolation operator 3.5.2 The full C1-Q2 interpolation operator 3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes 3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates 3.6 An anisotropic macro-element of tensor product type 3.7 Application of macro-element interpolation on a tensor product Shishkin mesh 4 Balanced norm results for reaction-diffusion 4.1 The balanced finite element method of Lin and Stynes 4.2 A C0 interior penalty method 4.3 Galerkin finite element method 4.3.1 L2-norm error bounds and supercloseness 4.3.2 Maximum-norm error bounds 4.4 Numerical verification 4.5 Further developments and summary References

Page generated in 0.0498 seconds