Spelling suggestions: "subject:"macroelement"" "subject:"macroelement""
1 |
A Composite Frame/joint Super Element For Structures Strengthened By Externally Bonded Steel/frp PlatesKaymak, Yalcin 01 January 2003 (has links) (PDF)
A materially non-linear layered beam super element is developed for the analysis of RC beams and columns strengthened by externally bonded steel/FRP plates. The elasto-plastic behavior of RC member is incorporated by its internally generated or externally supplied moment-curvature diagram. The steel plate is assumed to be
elasto-plastic and the FRP laminate is assumed to behave linearly elastic up to
rupture. The thin epoxy layer between the RC member and the externally bonded lamina is simulated by a special interface element which allows for the changing failure modes from steel plate yielding/FRP plate rupture to separation of the bonded plates as a result of bond failure in the epoxy layer. An empirical failure criterion based on test results is used for the epoxy material of the interface.
The most critical aspect of such applications in real life frame structures is the anchorage conditions at the member ends and junctions. This has direct influence on the success and the effectiveness of the application. Therefore, a special corner piece anchorage element is also considered in the formulation of the joint super
element, which establishes the fixity and continuity conditions at the member ends
and the joints.
|
2 |
Etude de l’interaction sol-structure et de la fondation d’une éolienne offshore soumise à des chargements statiques/cycliques / Soil-structure interaction of offshore wind turbine pile foundations under static monotonic/cyclic loadsIsorna, Rocio 06 January 2017 (has links)
Les structures offshores sont conçues pour résister à des chargements environnementaux sévères. Des études expérimentales et numériques de la fondation d’une éolienne offshore soumise à des chargements statiques monotones/cycliques sont présentées dans ce manuscrit. Des pieux isolés (diamètre de 1,8 m et 40 m de longueur) et une structure en treillis fondée sur 4 pieux ont été testés à 100×g en centrifuge dans un massif de sable de Fontainebleau dense. Le comportement du pieu isolé a été identifié à travers des essais de chargement axial monotone. Différentes méthodes de mise en place de pieu ont été adoptées (installation à 1×g et à 100×g) et leur influence sur la capacité portante a été mesurée. Le diagramme de stabilité du pieu a été construit à partir des résultats des essais cycliques, des essais CPT ont été réalisés et l’influence des contraintes initiales a été étudiée. Des résultats expérimentaux de la fondation jacket soumise à des chargements latéraux cycliques sont enfin présentés. La méthode des éléments finis et un macro-élément pour des pieux ont été utilisés pour reproduire numériquement les résultats expérimentaux. Les lois de comportement adoptées sont basées sur la théorie d’hypo-plasticité et les contraintes initiales dans le sol sont issues de la méthode ICP-05. Les résultats numériques sont confrontés aux résultats expérimentaux et aux résultats analytiques obtenus à partir de la norme API. / Offshore structures are designed to resist to severe environmental loads. This manuscript presents experimental and numerical studies on offshore wind turbine pile foundations submitted to static monotonic/cyclic loads. Isolated piles (diameter of 1.8 m and embedded length of 40m) and a four-legged truss structure installed in dense Fontainebleau sand have been tested at 100×g in a geotechnical centrifuge. The behavior of the isolated piles has been characterized under monotonic axial load. The piles have been jacketed at 1×g and 100×g and the influence of the setup method on the bearing capacity has been measured. The stability diagram of a pile has been constructed using cyclic tests, CPT experiments have been performed and the influence of the initial stresses has been studied. Finally, experimental results of the jacket foundation submitted to lateral cyclic loadings are presented. The finite element method and a macro-element for piles have been used to numerically reproduce the experimental results. Constitutive laws are based on the hypoplasticity theory and the initial stresses in the soil have been calculated using the IC-05 method. The numerical results are compared with the experimental and the analytical results from the API standards.
|
3 |
Numerical investigation of caisson foundations in sand under combined monotonic loadings for offshore wind turbines / Étude numérique des fondations caisson dans du sable sous chargements monotones combinés pour des éoliennes en merJin, Zhuang 14 January 2019 (has links)
Cette thèse de doctorat porte sur la réponse des fondations caisson dans du sable pour les éoliennes en mer soumises à des chargements monotones et cycliques combinés. Le processus de défaillance et l’enveloppe de rupture (diagramme de capacité portante) d’une fondation en caisson dans du sable soumise à des chargements monotones combinés sont premièrement étudiés à l’aide du modèle constitutif de Mohr-Coulomb. La méthode Lagrangian-Smoothed Particle Hydrodynamics Combinée (CLSPH) est adoptée pour prendre en compte les grandes déformations et les limites de l'approche sont mises en évidence. Une loi constitutive basée sur la notion de l’état critique pour le sable récemment mis au point (SIMSAND) est ensuite introduite et utilisée avec la méthode CLSPH. Des tests d’effondrement du sol dans un canal rectangulaire et d’une colonne granulaire en prenant en compte différentes géométries sont simulés afin de valider l’approche en termes de morphologie de dépôt final, des profils d’écoulement et de zones non perturbées. La méthode CLSPH et le modèle SIMSAND sont ensuite utilisés pour étudier le diagramme de capacité portante des fondations caisson dans du sable. Différents paramètres ayant une incidence sur la forme et la taille de l'enveloppe de rupture sont pris en compte, tels que la densité et la rigidité du sol, la résistance au frottement, la rupture des grains, la géométrie et les dimensions de la fondation. Une formule analytique est introduite pour décrire la surface de rupture 3D capable à reproduire les résultats numériques. Sur la base de la formule analytique proposée, un macro-élément pour des fondations caisson dans du sable soumises à des chargements monotones et cycliques est finalement développé dans le cadre de l'hypoplasticité. L’outil numérique proposé est validé avec des résultats expérimentaux. / This PhD thesis deals with the response of caisson foundations in sand for offshore wind turbines submitted to combined monotonic and cyclic loadings. First, the failure process and failure envelope (or bearing capacity diagram) of a caisson foundation in sand under combined monotonic loadings is investigated using the conventional Mohr-Coulomb constitutive model. A Combined Lagrangian-Smoothed Particle Hydrodynamics(CLSPH) method is adopted to consider large deformations and the limitations of the approach are highlighted. A recently developed critical state model for sand (SIMSAND) is then introduced and combined with the CLSPH method. Rectangular channel soil collapse tests and granular column collapse tests considering different aspect ratios are simulated to validate the approach in terms of final deposit morphologies, flow profiles and undisturbed areas.The CLSPH method and the SIMSAND model are then used to investigate the bearing capacity diagram of the caisson foundation in sand. Different parameters affecting the shape and size of the failure envelope are considered, as soil density and stiffness, friction strength, grain breakage, geometry and aspect ratio of the foundation. An analytical formula is introduced to describe the 3D failure surface reproducing the numerical results. Based on the proposed analytical formula, a macro-element for the caisson foundation in sand submitted to monotonic and cyclic loadings is finally developed within the framework of hypoplasticity. Validation is provided through comparison with experimental results.
|
4 |
Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé / Simplified models for the analysis of seismic risk of reinforced concrete buildingsHasnaoui, Fadhila 23 June 2014 (has links)
Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé. Résumé de la thèse en français (1800 signes max.) : La thèse s’inscrit dans le cadre du projet MARS (Méthodes Avancées pour le Risque Sismique, EDF R&D). Elle concerne plus particulièrement certaines tâches sur le développement des méthodes simplifiées et robustes de calcul pour permettre la simulation intensive et table de la réponse sismique de bâtiments en béton armé. En effet, |’analyse de risque nécessite un très grand nombre de calculs pour tenir compte des incertitudes, tant sur le chargement (aléa sismique) que sur le comportement non linéaire des structures. Dans la première partie de ce travail, nous effectuerons une étude bibliographique sur les modèles de résolution sismique pour les bâtiments en béton armé. Cette étape va nous permettre de rassembler le maximum d’éléments nécessaires permettant de comprendre et d’identifier tous les paramètres, les avantages, les inconvénients et la limite d’utilisation de chaque procédure de calcul numérique par éléments finis. Dans la deuxième partie, on développe un macro-élément de poteau-poutre, associé â un modèle de comportement non linéaire afin de traduire la réponse de la structure sous les sollicitations sismiques. Des hypothèses cinématiques ont été adoptées pour limiter le nombre de degrés de liberté. La loi de comportement globale en cisaillement est décrite dans le cadre delà plasticité. Nous avons choisi un modèle à écrouissage cinématique pour prendre en compte la dissipation due à la fissuration. Les paramètres sont identifiés à partir de résultats expérimentaux ou bien pré-calculés par des analyses â une échelle locale (calculs 3D par éléments finis ou calcul simplifié type « Modified Compression Field Theory >>). Des analyses numériques ont été réalisées afin de valider le modèle proposé comparant à des essais expérimentaux disponibles dans la littérature. / This PhD is part of the MARS project (Advanced Methods for Seismic Risk, EDF R&D). It relates particularity to the development of simplified and robust calculation. The overall aim is to significantly reduce the intensive computation time without loosing a reliable simulation of the seismic response of reinforced concrete buildings methods. Seismic risk analysis requires a very large number of repeated calculations to account for uncertainties of both the loading (seismichazard) and the nonlinear behaviour of structures. ln the first part of this work, a bibliographic study on seismic resolution models for reinforced concrete buildings is provided. This step allows collecting the maximum of necessary elements to understand and identify all the parameters, advantages, disadvantages and limits of use of each finite element calculation method. In the second part, a macro—elements for beam—column joint associated to a nonlinear behavior to reflect the response to the structure under seismic loads ls developed. Kinematic assumptions have been adopted to limit the number of degrees of freedom. The law of global shear behavior is described in the context of plasticity. A model with kinematic hardening is chosen to account for the dissipation due to cracking. Model parameters are identified from experimental results or pre-calculated by analysis on a local scale vla 3D finite element calculation or the implied "Modihed Compression Field Theory Numerical analyses were performed to validate the proposed approach against experimental tests available in the literature.
|
5 |
Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers / Fehleranalysis der Galerkin FEM in L2-basierten Normen für Probleme mit GrenzschichtenSchopf, Martin 20 May 2014 (has links) (PDF)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions:
1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm?
2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm?
In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm.
These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature.
In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity.
In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings.
In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates.
In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.
|
6 |
Error analysis of the Galerkin FEM in L 2 -based norms for problems with layers: On the importance, conception and realization of balancingSchopf, Martin 07 May 2014 (has links)
In the present thesis it is shown that the most natural choice for a norm for the analysis of the Galerkin FEM, namely the energy norm, fails to capture the boundary layer functions arising in certain reaction-diffusion problems. In view of a formal Definition such reaction-diffusion problems are not singularly perturbed with respect to the energy norm. This observation raises two questions:
1. Does the Galerkin finite element method on standard meshes yield satisfactory approximations for the reaction-diffusion problem with respect to the energy norm?
2. Is it possible to strengthen the energy norm in such a way that the boundary layers are captured and that it can be reconciled with a robust finite element method, i.e.~robust with respect to this strong norm?
In Chapter 2 we answer the first question. We show that the Galerkin finite element approximation converges uniformly in the energy norm to the solution of the reaction-diffusion problem on standard shape regular meshes. These results are completely new in two dimensions and are confirmed by numerical experiments. We also study certain convection-diffusion problems with characterisitc layers in which some layers are not well represented in the energy norm.
These theoretical findings, validated by numerical experiments, have interesting implications for adaptive methods. Moreover, they lead to a re-evaluation of other results and methods in the literature.
In 2011 Lin and Stynes were the first to devise a method for a reaction-diffusion problem posed in the unit square allowing for uniform a priori error estimates in an adequate so-called balanced norm. Thus, the aforementioned second question is answered in the affirmative. Obtaining a non-standard weak formulation by testing also with derivatives of the test function is the key idea which is related to the H^1-Galerkin methods developed in the early 70s. Unfortunately, this direct approach requires excessive smoothness of the finite element space considered. Lin and Stynes circumvent this problem by rewriting their problem into a first order system and applying a mixed method. Now the norm captures the layers. Therefore, they need to be resolved by some layer-adapted mesh. Lin and Stynes obtain optimal error estimates with respect to the balanced norm on Shishkin meshes. However, their method is unable to preserve the symmetry of the problem and they rely on the Raviart-Thomas element for H^div-conformity.
In Chapter 4 of the thesis a new continuous interior penalty (CIP) method is present, embracing the approach of Lin and Stynes in the context of a broken Sobolev space. The resulting method induces a balanced norm in which uniform error estimates are proven. In contrast to the mixed method the CIP method uses standard Q_2-elements on the Shishkin meshes. Both methods feature improved stability properties in comparison with the Galerkin FEM. Nevertheless, the latter also yields approximations which can be shown to converge to the true solution in a balanced norm uniformly with respect to diffusion parameter. Again, numerical experiments are conducted that agree with the theoretical findings.
In every finite element analysis the approximation error comes into play, eventually. If one seeks to prove any of the results mentioned on an anisotropic family of Shishkin meshes, one will need to take advantage of the different element sizes close to the boundary. While these are ideally suited to reflect the solution behavior, the error analysis is more involved and depends on anisotropic interpolation error estimates.
In Chapter 3 the beautiful theory of Apel and Dobrowolski is extended in order to obtain anisotropic interpolation error estimates for macro-element interpolation. This also sheds light on fundamental construction principles for such operators. The thesis introduces a non-standard finite element space that consists of biquadratic C^1-finite elements on macro-elements over tensor product grids, which can be viewed as a rectangular version of the C^1-Powell-Sabin element. As an application of the general theory developed, several interpolation operators mapping into this FE space are analyzed. The insight gained can also be used to prove anisotropic error estimates for the interpolation operator induced by the well-known C^1-Bogner-Fox-Schmidt element. A special modification of Scott-Zhang type and a certain anisotropic interpolation operator are also discussed in detail. The results of this chapter are used to approximate the solution to a recation-diffusion-problem on a Shishkin mesh that features highly anisotropic elements. The obtained approximation features continuous normal derivatives across certain edges of the mesh, enabling the analysis of the aforementioned CIP method.:Notation
1 Introduction
2 Galerkin FEM error estimation in weak norms
2.1 Reaction-diffusion problems
2.2 A convection-diffusion problem with weak characteristic layers and a Neumann outflow condition
2.3 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers
2.3.1 Weakly imposed characteristic boundary conditions
2.4 Numerical experiments
2.4.1 A reaction-diffusion problem with boundary layers
2.4.2 A reaction-diffusion problem with an interior layer
2.4.3 A convection-diffusion problem with characteristic layers and a Neumann outflow condition
2.4.4 A mesh that resolves only part of the exponential layer and neglects the weaker characteristic layers
3 Macro-interpolation on tensor product meshes
3.1 Introduction
3.2 Univariate C1-P2 macro-element interpolation
3.3 C1-Q2 macro-element interpolation on tensor product meshes
3.4 A theory on anisotropic macro-element interpolation
3.5 C1 macro-interpolation on anisotropic tensor product meshes
3.5.1 A reduced macro-element interpolation operator
3.5.2 The full C1-Q2 interpolation operator
3.5.3 A C1-Q2 macro-element quasi-interpolation operator of Scott-Zhang type on tensor product meshes
3.5.4 Summary: anisotropic C1 (quasi-)interpolation error estimates
3.6 An anisotropic macro-element of tensor product type
3.7 Application of macro-element interpolation on a tensor product Shishkin mesh
4 Balanced norm results for reaction-diffusion
4.1 The balanced finite element method of Lin and Stynes
4.2 A C0 interior penalty method
4.3 Galerkin finite element method
4.3.1 L2-norm error bounds and supercloseness
4.3.2 Maximum-norm error bounds
4.4 Numerical verification
4.5 Further developments and summary
References
|
Page generated in 0.0448 seconds