Spelling suggestions: "subject:"anisotrope stock"" "subject:"anisotropes stock""
1 |
Verallgemeinerte Eigenfunktionen und lokale Integralcharakteristiken bei quasi-statischer Rissausbreitung in anisotropen MaterialienSteigemann, Martin January 2008 (has links)
Zugl.: Kassel, Univ., Diss., 2008
|
2 |
Anisotrope HydrogeleHickl, Markus Johannes. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Freiburg (Breisgau).
|
3 |
Ferromagnetic (Ga,Mn)As Layers and Nanostructures : Control of Magnetic Anisotropy by Strain EngineeringWenisch, Jan January 2008 (has links)
Würzburg, Univ., Diss., 2009. / Zsfassung in dt. Sprache.
|
4 |
Efficient computation of seismic traveltimes in anisotropic media and the application in pre-stack depth migrationRiedel, Marko 01 July 2016 (has links) (PDF)
This study is concerned with the computation of seismic first-arrival traveltimes in anisotropic media using finite difference eikonal methods. For this purpose, different numerical schemes that directly solve the eikonal equation are implemented and assessed numerically. Subsequently, they are used for pre-stack depth migration on synthetic and field data.
The thesis starts with a detailed examination of different finite difference methods that have gained popularity in scientific literature for computing seismic traveltimes in isotropic media. The most appropriate for an extension towards anisotropic media are found to be the so-called Fast Marching/Sweeping methods. Both schemes rely on different iteration strategies, but incorporate the same upwind finite difference Godunov schemes that are implemented up to the second order. As a result, the derived methods exhibit high numerical accuracy and perform robustly even in highly contrasted velocity models.
Subsequently, the methods are adapted for transversely isotropic media with vertical (VTI) and tilted (TTI) symmetry axes, respectively. Therefore, two different formulations for approximating the anisotropic phase velocities are tested, which are the weakly-anisotropic and the pseudo-acoustic approximation. As expected, the pseudo-acoustic formulation shows superior accuracy especially for strongly anisotropic media. Moreover, it turns out that the tested eikonal schemes are generally more accurate than anisotropic ray tracing approaches, since they do not require an approximation of the group velocity.
Numerical experiments are carried out on homogeneous models with varying strengths of anisotropy and the industrial BP 2007 benchmark model. They show that the computed eikonal traveltimes are in good agreement with independent results from finite difference modelling of the isotropic and anisotropic elastic wave equations, and traveltimes estimated by ray-based wavefront construction, respectively. The computational performance of the TI eikonal schemes is largely increased compared to their original isotropic implementations, which is due to the algebraic complexity of the anisotropic phase velocity formulations. At this point, the Fast Marching Method is found to be more efficient on models containing up to 50 million grid points. For larger models, the anisotropic Fast Sweeping implementation gradually becomes advantageous. Here, both techniques perform independently well of the structural complexity of the underlying velocity model.
The final step of this thesis is the application of the developed eikonal schemes in pre-stack depth migration. A synthetic experiment over a VTI/TTI layer-cake model demonstrates that the traveltime computation leads to accurate imaging results including a tilted, strongly anisotropic shale layer. The experiment shows further that the estimation of anisotropic velocity models solely from surface reflection data is highly ambiguous. In a second example, the eikonal solvers are applied for depth imaging of two-dimensional field data that were acquired for geothermal exploration in southern Tuscany, Italy. The developed methods also produce clear imaging results in this setting, which illustrates their general applicability for pre-stack depth imaging, particularly in challenging environments.
|
5 |
Efficient computation of seismic traveltimes in anisotropic media and the application in pre-stack depth migrationRiedel, Marko 26 May 2016 (has links)
This study is concerned with the computation of seismic first-arrival traveltimes in anisotropic media using finite difference eikonal methods. For this purpose, different numerical schemes that directly solve the eikonal equation are implemented and assessed numerically. Subsequently, they are used for pre-stack depth migration on synthetic and field data.
The thesis starts with a detailed examination of different finite difference methods that have gained popularity in scientific literature for computing seismic traveltimes in isotropic media. The most appropriate for an extension towards anisotropic media are found to be the so-called Fast Marching/Sweeping methods. Both schemes rely on different iteration strategies, but incorporate the same upwind finite difference Godunov schemes that are implemented up to the second order. As a result, the derived methods exhibit high numerical accuracy and perform robustly even in highly contrasted velocity models.
Subsequently, the methods are adapted for transversely isotropic media with vertical (VTI) and tilted (TTI) symmetry axes, respectively. Therefore, two different formulations for approximating the anisotropic phase velocities are tested, which are the weakly-anisotropic and the pseudo-acoustic approximation. As expected, the pseudo-acoustic formulation shows superior accuracy especially for strongly anisotropic media. Moreover, it turns out that the tested eikonal schemes are generally more accurate than anisotropic ray tracing approaches, since they do not require an approximation of the group velocity.
Numerical experiments are carried out on homogeneous models with varying strengths of anisotropy and the industrial BP 2007 benchmark model. They show that the computed eikonal traveltimes are in good agreement with independent results from finite difference modelling of the isotropic and anisotropic elastic wave equations, and traveltimes estimated by ray-based wavefront construction, respectively. The computational performance of the TI eikonal schemes is largely increased compared to their original isotropic implementations, which is due to the algebraic complexity of the anisotropic phase velocity formulations. At this point, the Fast Marching Method is found to be more efficient on models containing up to 50 million grid points. For larger models, the anisotropic Fast Sweeping implementation gradually becomes advantageous. Here, both techniques perform independently well of the structural complexity of the underlying velocity model.
The final step of this thesis is the application of the developed eikonal schemes in pre-stack depth migration. A synthetic experiment over a VTI/TTI layer-cake model demonstrates that the traveltime computation leads to accurate imaging results including a tilted, strongly anisotropic shale layer. The experiment shows further that the estimation of anisotropic velocity models solely from surface reflection data is highly ambiguous. In a second example, the eikonal solvers are applied for depth imaging of two-dimensional field data that were acquired for geothermal exploration in southern Tuscany, Italy. The developed methods also produce clear imaging results in this setting, which illustrates their general applicability for pre-stack depth imaging, particularly in challenging environments.
|
6 |
Inherent strength and stiffness anisotropy of laminated rocksIsmael, Mohamed 28 May 2019 (has links)
The variation of rock strength and stiffness, known as mechanical anisotropy, is expected at different scales: large (rock mass) - or small (intact rock) - scales. It is always mandatory for engineering applications built either on or in anisotropic rock masses to investigate the strength and deformation behavior of those masses. To achieve this goal, continuum-based constitutive models are presented to analyze the mechanical anisotropy. One of both implemented models is named ‘Transubi model’ which considers the transverse isotropic elasticity into bi-linear Mohr-Coulomb strain hardening/softening plastic framework. Experimental investigations and numerical simulations focused mainly on the influence of the mechanical anisotropy on the plastic zoning around excavated openings in laminated rocks. Later, the Transubi model was applied to a tunnel excavated in a shaly facies formation of bedded argillaceous Opalinus clay in an URL (FE-tunnel) to obtain the short-term stability insights. Overall, the research outcomes may have a prospective impact regarding the understanding of anisotropy of laminated, bedded and foliated rocks which improves the deformation behaviour predictability using continuum-based numerical modeling tools.
|
7 |
Brazilian test on anisotropic rocksDinh, Quoc Dan 29 September 2011 (has links) (PDF)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab.
A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc.
There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material. / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht.
Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen.
Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.
|
8 |
Brazilian test on anisotropic rocks: laboratory experiment, numerical simulation and interpretationDinh, Quoc Dan 09 February 2011 (has links)
The present work describes investigations on the anisotropic strength behavior of rocks in the splitting tensile test (Brazilian test). Three transversely isotropic rocks (gneiss, slate and sandstone) were studied in the Lab.
A total of more than 550 indirect tensile strength tests were conducted, with emphasis was placed on the investigation of the influence of the spatial position of anisotropic weakness plane to the direction of the load on the fracture strength and fracture or fracture mode. In parallel, analytical solutions were evaluated for stress distribution and developed 3D numerical models to study the stress distribution and the fracture mode at the transversely isotropic disc.
There were new findings on the fracture mode of crack propagation, the influence of the disc thickness, the influence of the applying loading angle and angle of the loading-foliation for transversely isotropic material.:ACKNOWLEDGMENTS 5
ABSTRACT 7
TABLE OF CONTENTS 9
LIST OF FIGURES 13
LIST OF TABLES 19
I. INTRODUCTION 21
Objective of this work 22
Scope of work 23
Research procedure 23
Significance of the work 24
Layout 24
1 STATE OF THE ART 27
1.1 Review of the Brazilian tensile strength test 27
1.1.1 General overview 27
1.1.2 Development of the Brazilian tensile strength test 29
1.1.3 The Brazilian tensile strength test on anisotropic rocks 31
1.1.4 Summary 32
1.2 Analytical aspects 33
1.2.1 Hypotheses for the conventional Brazilian test 34
1.2.2 Failure criteria 36
1.2.3 Crack initiation and propagation 39
1.2.4 Summary 41
1.3 Numerical considerations 41
1.3.1 Numerical methods 42
1.3.2 Summary 42
1.4 Conclusion 43
2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45
2.1 Introduction 45
2.2 Diametral compressive stress distribution in an isotropic elastic disc 45
2.2.1 Elastic theory of line load 46
2.2.2 2D analytical solutions 47
2.2.3 3D disc under line and diametral compressive distributed loads 55
2.2.4 3D solution under diametral compressive distributed load 56
2.3 Stress and strain in an isotropic solid disc 59
2.4 Stress and strain in anisotropic rocks 61
2.5 Conclusion 65
3 LABORATORY TESTS 69
3.1 Introduction 69
3.2 Laboratory test program 70
3.3 Sample preparation 71
3.4 Ultrasonic measurements 72
3.5 Uniaxial and triaxial compression tests 73
3.5.1 Uniaxial compression test 73
3.5.2 Triaxial compression tests 74
3.6 Brazilian tensile strength tests 76
3.6.1 Test apparatus 76
3.6.2 Laboratory test results 77
3.6.3 Interpretation of the test results 89
3.7 Conclusion 96
4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97
4.1 Introduction 97
4.2 Numerical simulation of isotropic materials 97
4.2.1 FLAC3D simulation program 97
4.2.2 Simulation procedure 98
4.2.3 Numerical model setup 98
4.2.4 Influence of mesh type 99
4.2.5 Influence of specimen thickness 100
4.2.6 Influence of Poisson’s ratio 102
4.2.7 Influence of loading angle (2) 106
4.2.8 Comparison of 3D analytical and numerical results 110
4.2.9 Influence of stress concentration at the loading jaws 112
4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112
4.4 Conclusion 114
5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117
5.1 Introduction 117
5.2 General procedure for simulating the Brazilian test using FLAC3D 117
5.2.1 Conceptual model 119
5.2.2 Boundary Conditions 119
5.2.3 Numerical model set-up 120
5.3 Constitutive model 121
5.3.1 Choice of constitutive model 121
5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121
5.4 Parameter calibration 124
5.4.1 Material parameters used 124
5.4.2 Contact between disc and loading jaws 126
5.4.3 Post-failure deformation properties 128
5.4.4 Tension cut-off 129
5.5 Numerical simulation results 131
5.5.1 Introduction 131
5.5.2 Stress distribution and failure state 133
5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136
5.5.4 Plasticity states 139
5.5.5 Damage and fracture process 141
5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148
5.6 Tensile strength – Comparison of lab results and numerical simulations 149
5.6.1 Tensile strength of Le.Gs Gneiss 150
5.6.2 Tensile strength of My.Sc Slate 155
5.7 Summary and Review 159
5.7.1 Potential failure state deduced from pure elastic considerations 159
5.7.2 Tensile strength distribution 160
5.7.3 Tensile strength – determining the anisotropy factor 161
5.7.4 Tensile strength – different procedures - different results 163
6 CONCLUSION AND RECOMMENDATIONS 165
APPENDICES 171
Appendix 3.1 - Fracture patterns in FG.Ss samples 171
Appendix 3.2 - Fracture patterns in FG.Gs samples 177
Appendix 3.3 - Fracture patterns in Le.Gs samples 183
Appendix 3.4 - Fracture patterns in My.Sc samples 190
Appendix 4.1 - Influence of loading angle 197
Appendix 4.2 - Influence of material properties 203
Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209
Appendix 5.2: Failure zone state in My.Sc Slate 216
REFERENCES 223 / Inhalt der Arbeit sind Untersuchungen zum anisotropen Festigkeitsverhalten von Gesteinen beim Spaltzugversuch (Brazilian Test). Laborativ wurden drei transversalisotrope Gesteine (Granit, Schiefer und Sandstein) untersucht.
Insgesamt wurden mehr als 550 Spaltzugversuche durchgeführt, wobei der Schwerpunkt auf die Untersuchung des Einflusses der räumlichen Lage der Anisotropieebene zur Richtung des Lasteintrages auf die Bruchfestigkeit und das Bruchbild bzw. den Bruchmodus gelegt wurde. Parallel dazu wurden analytische Lösungen zur Spannungsverteilung ausgewertet sowie numerische 3D-Modelle entwickelt, um die Spannungsverteilung sowie den Bruchmodus bei einer transversalisotropen Scheibe zu untersuchen.
Es wurden neue Erkenntnisse zum Bruchmodus, der Rissausbreitung, des Einflusses der Scheibendicke, dem Einfluss des Lasteinleitungswinkel sowie des Winkels Lasteintrag - Anisotropieebene für transversalisotropes Material gewonnen.:ACKNOWLEDGMENTS 5
ABSTRACT 7
TABLE OF CONTENTS 9
LIST OF FIGURES 13
LIST OF TABLES 19
I. INTRODUCTION 21
Objective of this work 22
Scope of work 23
Research procedure 23
Significance of the work 24
Layout 24
1 STATE OF THE ART 27
1.1 Review of the Brazilian tensile strength test 27
1.1.1 General overview 27
1.1.2 Development of the Brazilian tensile strength test 29
1.1.3 The Brazilian tensile strength test on anisotropic rocks 31
1.1.4 Summary 32
1.2 Analytical aspects 33
1.2.1 Hypotheses for the conventional Brazilian test 34
1.2.2 Failure criteria 36
1.2.3 Crack initiation and propagation 39
1.2.4 Summary 41
1.3 Numerical considerations 41
1.3.1 Numerical methods 42
1.3.2 Summary 42
1.4 Conclusion 43
2 DIAMETRAL COMPRESSION IN A SOLID DISC – COMPILATION OF ANALYTICAL AND SEMI-ANALYTICAL SOLUTIONS 45
2.1 Introduction 45
2.2 Diametral compressive stress distribution in an isotropic elastic disc 45
2.2.1 Elastic theory of line load 46
2.2.2 2D analytical solutions 47
2.2.3 3D disc under line and diametral compressive distributed loads 55
2.2.4 3D solution under diametral compressive distributed load 56
2.3 Stress and strain in an isotropic solid disc 59
2.4 Stress and strain in anisotropic rocks 61
2.5 Conclusion 65
3 LABORATORY TESTS 69
3.1 Introduction 69
3.2 Laboratory test program 70
3.3 Sample preparation 71
3.4 Ultrasonic measurements 72
3.5 Uniaxial and triaxial compression tests 73
3.5.1 Uniaxial compression test 73
3.5.2 Triaxial compression tests 74
3.6 Brazilian tensile strength tests 76
3.6.1 Test apparatus 76
3.6.2 Laboratory test results 77
3.6.3 Interpretation of the test results 89
3.7 Conclusion 96
4 NUMERICAL SIMULATION OF ISOTROPIC MATERIALS - COMPARISON WITH ANALYTICAL SOLUTIONS 97
4.1 Introduction 97
4.2 Numerical simulation of isotropic materials 97
4.2.1 FLAC3D simulation program 97
4.2.2 Simulation procedure 98
4.2.3 Numerical model setup 98
4.2.4 Influence of mesh type 99
4.2.5 Influence of specimen thickness 100
4.2.6 Influence of Poisson’s ratio 102
4.2.7 Influence of loading angle (2) 106
4.2.8 Comparison of 3D analytical and numerical results 110
4.2.9 Influence of stress concentration at the loading jaws 112
4.3 Comparison with experimental results of Postaer Sandstone (FG.Ss) 112
4.4 Conclusion 114
5 NUMERICAL SIMULATION OF ANISOTROPIC MATERIALS - COMPARISON WITH LABORATORY TESTS 117
5.1 Introduction 117
5.2 General procedure for simulating the Brazilian test using FLAC3D 117
5.2.1 Conceptual model 119
5.2.2 Boundary Conditions 119
5.2.3 Numerical model set-up 120
5.3 Constitutive model 121
5.3.1 Choice of constitutive model 121
5.3.2 Bilinear Strain-Hardening/Softening Ubiquitous-Joint Model [98] 121
5.4 Parameter calibration 124
5.4.1 Material parameters used 124
5.4.2 Contact between disc and loading jaws 126
5.4.3 Post-failure deformation properties 128
5.4.4 Tension cut-off 129
5.5 Numerical simulation results 131
5.5.1 Introduction 131
5.5.2 Stress distribution and failure state 133
5.5.3 Stress state in an isotropic elastic medium with arbitrary orientation planes 136
5.5.4 Plasticity states 139
5.5.5 Damage and fracture process 141
5.5.6 Fracture patterns – Comparison of lab results and numerical simulations 148
5.6 Tensile strength – Comparison of lab results and numerical simulations 149
5.6.1 Tensile strength of Le.Gs Gneiss 150
5.6.2 Tensile strength of My.Sc Slate 155
5.7 Summary and Review 159
5.7.1 Potential failure state deduced from pure elastic considerations 159
5.7.2 Tensile strength distribution 160
5.7.3 Tensile strength – determining the anisotropy factor 161
5.7.4 Tensile strength – different procedures - different results 163
6 CONCLUSION AND RECOMMENDATIONS 165
APPENDICES 171
Appendix 3.1 - Fracture patterns in FG.Ss samples 171
Appendix 3.2 - Fracture patterns in FG.Gs samples 177
Appendix 3.3 - Fracture patterns in Le.Gs samples 183
Appendix 3.4 - Fracture patterns in My.Sc samples 190
Appendix 4.1 - Influence of loading angle 197
Appendix 4.2 - Influence of material properties 203
Appendix 5.1 - Failure zone state in Le.Gs Gneiss 209
Appendix 5.2: Failure zone state in My.Sc Slate 216
REFERENCES 223
|
9 |
Determination of elastic (TI) anisotropy parameters from Logging-While-Drilling acoustic measurements - A feasibility studyDemmler, Christoph 07 January 2022 (has links)
This thesis provides a feasibility study on the determination of formation anisotropy parameters from logging-while-drilling (LWD) borehole acoustic measurements. For this reason, the wave propagation in fluid-filled boreholes surrounded by transverse isotropic (TI) formations is investigated in great detail using the finite-difference method. While the focus is put on quadrupole waves, the sensitivities of monopole and flexural waves are evaluated as well. All three wave types are considered with/without the presence of an LWD tool. Moreover, anisotropy-induced mode contaminants are discussed for various TI configurations. In addition, the well-known plane wave Alford rotation has been generalized to cylindrical borehole waves of any order, except for the monopole. This formulation has been extended to allow for non-orthogonal multipole firings, and associated inversion methods have been developed to compute formation shear principal velocities and accompanying polarization directions, utilizing various LWD (cross-) quadrupole measurements.:1 Introduction
1.1 Borehole acoustic configurations
1.2 Wave propagation in a fluid-filled borehole in the absence of a logging tool
1.3 Wave propagation in a fluid-filled borehole in the presence of a logging tool
1.4 Anisotropy
2 Theory
2.1 Stiffness and compliance tensor
2.1.1 Triclinic symmetry
2.1.2 Monoclinic symmetry
2.1.3 Orthotropic symmetry
2.1.4 Transverse isotropic (TI) symmetry
2.1.5 Isotropy
2.2 Reference frames
2.3 Seismic wave equations for a linear elastic, anisotropic medium
2.3.1 Basic equations
2.3.2 Integral transforms
2.3.3 Christoffel equation
2.3.4 Phase slowness surfaces
2.3.5 Group velocity
2.4 Solution in cylindrical coordinates for the borehole geometry
2.4.1 Special case: vertical transverse isotropy (VTI)
2.4.2 General case: triclinic symmetry
3 Finite-difference modeling of wave propagation in anisotropic media
3.1 Finite-difference method
3.2 Spatial finite-difference grids
3.2.1 Standard staggered grid
3.2.2 Lebedev grid
3.3 Heterogeneous media
3.4 Finite-difference properties and grid dispersion
3.5 Initial conditions
3.6 Boundary conditions
3.7 Parallelization
3.8 Finite-difference parameters
4 Wave propagation in fluid-filled boreholes surrounded by TI media
4.1 Vertical transverse isotropy (VTI)
4.1.1 Monopole excitation
4.1.2 Dipole excitation
4.1.3 Quadrupole excitation
4.1.4 Summary
4.2 Horizontal transverse isotropy (HTI)
4.2.1 Monopole excitation
4.2.2 Theory of cross-multipole shear wave splitting
4.2.3 Dipole excitation
4.2.4 Quadrupole excitation
4.2.5 Hexapole waves
4.2.6 Summary
4.3 Tilted transverse isotropy (TTI)
4.3.1 Monopole excitation
4.3.2 Dipole excitation
4.3.3 Quadrupole excitation
4.3.4 Summary
4.4 Anisotropy-induced mode contaminants
4.4.1 Vertical transverse isotropy (VTI)
4.4.2 Horizontal transverse isotropy (HTI)
4.4.3 Tilted transverse isotropy (TTI)
4.4.4 Summary
5 Inversion methods
5.1 Vertical transverse isotropy (VTI)
5.2 Horizontal transverse isotropy (HTI)
5.2.1 Inverse generalized Alford rotation
5.2.2 Inversion method based on dipole excitations
5.2.3 Inversion method based on quadrupole excitations
5.3 Tilted transverse isotropy (TTI)
5.4 Challenges in real measurements
5.4.1 Signal-to-noise ratio (SNR)
5.4.2 Tool eccentricity
6 Conclusions
References
List of Abbreviations and Symbols
List of Figures
List of Tables
A Integral transforms
A.1 Laplace transform
A.2 Spatial Fourier transform
A.3 Azimuthal Fourier transform
A.4 Meijer transform
B Stiffness and compliance tensor
B.1 Rotation between reference frames
B.2 Cylindrical coordinates
C Christoffel equation
C.1 Cartesian coordinates
C.2 Cylindrical coordinates
D Processing of borehole acoustic waveform array data
D.1 Time-domain methods
D.2 Frequency-domain methods
D.2.1 Weighted spectral semblance method
D.2.2 Modified matrix pencil method
|
10 |
Numerische Simulation von thermisch gekoppelten Gesteinszerstörungsprozessen mittels Diskreter ElementeMorgenstern, Roy 10 July 2024 (has links)
In den letzten Jahren intensivierten sich die Bemühungen, anisotropes Verhalten von Gesteinen in numerischen Modellen abzubilden. Für ein tiefgreifendes Verständnis dieser Prozesse sind numerische Modelle gut geeignet, da hier die Rand- und Anfangsbedingungen sehr exakt vorgegeben werden können, um das Verhalten eines pkysikalischen Systems unter vollständig kontrollierbaren Bedingungen zu studieren. Am Beispiel von Gneis wird ein numerisches Modell für die Modellierung einaxialer Druck- und Spaltzugversuche vorgestellt. Dieses nutzt den Diskreten-Element-Code 3DEC der Fa. Itasca Consulting Group, Inc. um gekoppeltes nichtlinear-anisotropes thermo-mechanisches Materialverhalten zu simulieren. In dieser Arbeit wird sowohl der Modellaufbau anhand eines GBM gezeigt, als auch ein Stoffgesetz zur Simulation eines nichtlinearen orthotropen thermischen Expansionsverhaltens entwickelt. Die dafür benötigten Modellparameter werden anhand von durchgeführten Laborversuchen kalibriert. Das entwickelte Modell wird dann angewendet, um die Modellierung einaxialer Druck- und Spaltzugversuchen für ein anisotropes Material (Gneis) durchzuführen, um das Modell zu validieren. Am Ende der Arbeit wird eine praktische Anwendung des Modells in Form eines Schneidversuchs gezeigt. / In recent years, efforts have intensified to simulate the anisotropic behavior of rocks in numerical models. Numerical models are well suited for a profound understanding of these processes, since the boundary and initial conditions can be specified very precisely in order to study the behavior of a physical system under fully controllable conditions. Using the example of gneiss, a numerical model is presented for the modeling of uniaxial compression and Brazilian tensile tests. The discrete element code 3DEC from the company Itasca Consulting Group, Inc. is used to simulate coupled nonlinear-
anisotropic thermo-mechanical material behavior. In this thesis the model generation is shown using Grain-Based Models and a material law for the simulation of a nonlinear orthotropic thermal expansion behavior is developed. The model parameters required for this are calibrated based on performed laboratory tests. The developed model is then applied to perform modeling of uniaxial compression
and Brazilian tensile tests for an anisotropic material (gneiss) to validate the model. Lastly, a practical application of the model is shown in the form of a cutting test.
|
Page generated in 0.0474 seconds