• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • Tagged with
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 12
  • 10
  • 8
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ein Residuenfehlerschätzer für anisotrope Tetraedernetze und Dreiecksnetze in der Finite-Elemente-Methode

Kunert, G. 30 October 1998 (has links)
Some boundary value problems yield anisotropic solutions, e.g. solutions with boundary layers. If such problems are to be solved with the finite element method (FEM), anisotropically refined meshes can be advantageous. In order to construct these meshes or to control the error one aims at reliable error estimators. For isotropic meshes such estimators are known but they fail when applied to anisotropic meshes. Rectangular (or cuboidal) anisotropic meshes were already investigated. In this paper an error estimator is presented for tetrahedral or triangular meshes which offer a much greater geometrical flexibility.
12

Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes

Kunert, Gerd 09 November 2000 (has links)
We consider a singularly perturbed reaction-diffusion problem and derive and rigorously analyse an a posteriori residual error estimator that can be applied to anisotropic finite element meshes. The quotient of the upper and lower error bounds is the so-called matching function which depends on the anisotropy (of the mesh and the solution) but not on the small perturbation parameter. This matching function measures how well the anisotropic finite element mesh corresponds to the anisotropic problem. Provided this correspondence is sufficiently good, the matching function is O(1). Hence one obtains tight error bounds, i.e. the error estimator is reliable and efficient as well as robust with respect to the small perturbation parameter. A numerical example supports the anisotropic error analysis.

Page generated in 0.1108 seconds