1 |
Two--Dimensional Conformal Field Theory and Beyond. Lessons from aI.T. Todorov, todorov@inrne.bas.bg 06 February 2001 (has links)
No description available.
|
2 |
Form factors and the dilatation operator in N = 4 super Yang-Mills theory and its deformationsWilhelm, Matthias Oliver 07 March 2016 (has links)
Im ersten Teil dieser Dissertation untersuchen wir Formfaktoren von allgemeinen eichinvarianten lokalen zusammengesetzten Operatoren in der N=4 Super-Yang-Mills-Theorie bei verschiedenen Schleifenordnungen und Anzahlen externer Felder. Wir zeigen, wie Masseschalen-Methoden zu ihrer Berechnung genutzt werden können, und extrahieren aus ihnen insbesondere den Dilatationsoperator. Wir untersuchen auch die Eigenschaften der zugehörigen Rückstandsfunktionen. Des Weiteren verallgemeinern wir Masseschalen-Diagramme, Graßmann-Integrale und die integrabilitätsinspirierte Technik der R-Operatoren zur Anwendung auf Formfaktoren, wobei wir uns auf das Beispiel des chiralen Teils des Energie-Impuls-Tensors konzentrieren. Im zweiten Teil untersuchen wir die Beta- und die Gamma-i-Deformation. Bei diesen handelt es sich um die allgemeinste supersymmetrische beziehungsweise nicht-supersymmetrische feldtheoretische Deformation von N=4 Super-Yang-Mills-Theorie, welche auf der Ebene des asymptotischen Bethe-Ansatzes integrabel sind. Hierbei tritt ein neuer Effekt der endlichen Systemgröße auf, der durch Doppelspurstrukturen in der deformierten Lagrange-Dichte hervorgerufen wird und den wir Vorwickeln nennen. Während die Beta-Deformation für sich an ihren nicht-verschwindenden IR-Fixpunkten befindliche Doppelspurkopplungen konform invariant ist, weist die Gamma-i-Deformation rennende Doppelspurkopplungen ohne Fixpunkte auf, was die konforme Invarianz selbst im planaren Limes bricht. Nichtsdestotrotz erlaubt die Gamma-i-Deformation hochgradig nicht-triviale Tests der Integrabilität bei beliebig hohen Schleifenordnungen. / In the first part of this thesis, we study form factors of general gauge-invariant local composite operators in N=4 super Yang-Mills theory at various loop orders and for various numbers of external legs. We show how to use on-shell methods for their calculation and in particular extract the dilatation operator from the result. We also investigate the properties of the corresponding remainder functions. Moreover, we extend on-shell diagrams, a Graßmannian integral formulation and an integrability-based construction via R-operators to form factors, focussing on the chiral part of the stress-tensor supermultiplet as an example. In the second part, we study the beta- and the gamma-i-deformation, which were respectively shown to be the most general supersymmetric and non-supersymmetric field-theory deformations of N=4 super Yang-Mills theory that are integrable at the level of the asymptotic Bethe ansatz. For these theories, a new kind of finite-size effect occurs, which we call prewrapping and which emerges from double-trace structures that are required in the deformed Lagrangians. While the beta-deformation is conformal when the double-trace couplings are at their non-trivial IR fixed points, the gamma-i-deformation has running double-trace couplings without fixed points, which break conformal invariance even in the planar theory. Nevertheless, the gamma-i-deformation allows for highly non-trivial field-theoretic tests of integrability at arbitrarily high loop orders.
|
3 |
Anomalous Dimensions in the WF O(N) Model with a Monodromy Line DefectSöderberg, Alexander January 2017 (has links)
General ideas in the conformal bootstrap program are covered. Both numerical and analytical approaches to the bootstrap equation are reviewed to show how it can be manipulated in different ways. Further analytical approaches are studied for theories with defects. We consider the three-dimensional CFT at the corresponding WF fixed point in the O(N) \phi^4 model with a co-dimension two, monodromy defect. Anomalous dimensions for bulk- and defect-local fields as well as one of the OPE coefficients are found to the first loop order. Implications of inserting this defect and constraints that arises from symmetries of the theory are investigated.
|
Page generated in 0.0762 seconds