• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 327
  • 18
  • 17
  • 17
  • 15
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 481
  • 481
  • 214
  • 212
  • 160
  • 138
  • 116
  • 91
  • 81
  • 74
  • 69
  • 68
  • 60
  • 59
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Performance anomaly detection and resolution for autonomous clouds

Ibidunmoye, Olumuyiwa January 2017 (has links)
Fundamental properties of cloud computing such as resource sharing and on-demand self-servicing is driving a growing adoption of the cloud for hosting both legacy and new application services. A consequence of this growth is that the increasing scale and complexity of the underlying cloud infrastructure as well as the fluctuating service workloads is inducing performance incidents at a higher frequency than ever before with far-reaching impact on revenue, reliability, and reputation. Hence, effectively managing performance incidents with emphasis on timely detection, diagnosis and resolution has thus become a necessity rather than luxury. While other aspects of cloud management such as monitoring and resource management are experiencing greater automation, automated management of performance incidents remains a major concern. Given the volume of operational data produced by cloud datacenters and services, this thesis focus on how data analytics techniques can be used in the aspect of cloud performance management. In particular, this work investigates techniques and models for automated performance anomaly detection and prevention in cloud environments. To familiarize with developments in the research area, we present the outcome of an extensive survey of existing research contributions addressing various aspects of performance problem management in diverse systems domains. We discuss the design and evaluation of analytics models and algorithms for detecting performance anomalies in real-time behaviour of cloud datacenter resources and hosted services at different resolutions. We also discuss the design of a semi-supervised machine learning approach for mitigating performance degradation by actively driving quality of service from undesirable states to a desired target state via incremental capacity optimization. The research methods used in this thesis include experiments on real virtualized testbeds to evaluate aspects of proposed techniques while other aspects are evaluated using performance traces from real-world datacenters. Insights and outcomes from this thesis can be used by both cloud and service operators to enhance the automation of performance problem detection, diagnosis and resolution. They also have the potential to spur further research in the area while being applicable in related domains such as Internet of Things (IoT), industrial sensors as well as in edge and mobile clouds. / Grundläggande egenskaper för datormoln såsom resursdelning och självbetjäning driver ett växande nyttjande av molnet för internettjänster. En följd av denna tillväxt är att den underliggande molninfrastrukturens ökande storlek och komplexitet samt fluktuerade arbetsbelastning orsakar prestandaincidenter med högre frekvens än någonsin tidigare. En konsekvens av detta blir omfattande inverkan på intäkter, tillförlitlighet och rykte för de som äger tjänsterna. Det har därför blivit viktigt att snabbt och effektivt hantera prestandaincidenter med avseende på upptäckt, diagnos och korrigering. Även om andra aspekter av resurshantering för datormoln, som övervakning och resursallokering, på senare tid automatiserats i allt högre grad så är automatiserad hantering av prestandaincidenter fortfarande ett stort problem. Denna avhandling fokuserar på hur prestandahanteringen i molndatacenter kan förbättras genom användning av dataanalystekniker på de stora datamängder som produceras i de system som monitorerar prestanda hos datorresurser och tjänster. I synnerhet undersöks tekniker och modeller för automatisk upptäckt och förebyggande av prestandaanomalier i datormoln. För att kartlägga utvecklingen inom forskningsområdet presenterar vi resultatet av en omfattande undersökning av befintliga forskningsbidrag som behandlar olika aspekter av hantering av prestandaproblem inom i relevanta tillämpningsområden. Vi diskuterar design och utvärdering av analysmodeller och algoritmer för att upptäcka prestandaanomalier i realtid hos resurser och tjänster. Vi diskuterar också utformningen av ett maskininlärningsbaserat tillvägagångssätt för att mildra prestandaförluster genom att aktivt driva tjänsternas kvalitet från oönskade tillstånd till ett önskat målläge genom inkrementell kapacitetoptimering. Forskningsmetoderna som används i denna avhandling innefattar experiment på verkliga virtualiserade testmiljöer för att utvärdera aspekter av föreslagna tekniker medan andra aspekter utvärderas med hjälp av belastningsmönster från verkliga datacenter. Insikter och resultat från denna avhandling kan användas av både moln- och tjänsteoperatörer för att bättre automatisera detekteringen av prestandaproblem, inklusive dess diagnos och korrigering. Resultaten har också potential att uppmuntra vidare forskning inom området samtidigt som de är användbara inom relaterade områden som internet-av-saker, industriella sensorer, och storskaligt distribuerade moln eller telekomnätverk. / Cloud Control / eSSENCE
252

Modélisation de fonds complexes statiques et en mouvement : application à la détection d'événements rares dans les séries d'images / Modeling of static or moving complex backgrounds : application to rare event detection in image sequences

Davy, Axel 22 November 2019 (has links)
{La première partie de cette thèse est dédiée à la modélisation d'images ou de vidéos considérés comme des fonds sur lesquels on s'attache à détecter des anomalies. Notre analyse de la littérature de la détection d'anomalie sur une seule image nous a fait identifier cinq différentes familles d'hypothèses structurelles sur le fond. Nous proposons de nouveaux algorithmes pour les problèmes de détection d'anomalie sur seule image, de détection de petites cibles sur un fond en mouvement, de détection de changements sur des images satellitaires SAR (Synthetic Aperture Radar) et de détection de nuages dans des séquences d'images de satellite optique.Dans une seconde partie, nous étudions deux autres applications de la modélisation de fond. Pour le débruitage vidéo, nous cherchons pour chaque patch de la vidéo, des patchs similaires le long de la séquence vidéo, et fournissons à un réseau de neurones convolutif les pixels centraux de ces patchs. Le modèle de fond est caché dans les poids du réseau de neurones. Cette méthode s'avère être la plus performante des méthodes par réseau de neurones comparées. Nous étudions également la synthèse de texture à partir d'un exemple. Dans ce problème, des échantillons de texture doivent être générés à partir d'un seul exemple servant de référence. Notre étude distingue les familles d'algorithmes en fonction du type de modèle adopté. Dans le cas des méthodes par réseau de neurones, nous proposons une amélioration corrigeant les artefacts de bord.Dans une troisième partie, nous proposons des implémentations temps-réel GPU de l'interpolation B-spline et de plusieurs algorithmes de débruitage d'images et de vidéo: NL-means, BM3D et VBM3D. La rapidité des implémentations proposées permet leur utilisation dans des scénarios temps-réel, et elles sont en cours de transfert vers l'industrie. / The first part of this thesis is dedicated to the modeling of image or video backgrounds, applied to anomaly detection. In the case of anomaly detection on a single image, our analysis leads us to find five different families of structural assumptions on the background. We propose new algorithms for single-image anomaly detection, small target detection on moving background, change detection on satellite SAR (Synthetic Aperture Radar) images and cloud detection on a sequence of satellite optical images.In the second part, we study two further applications of background modeling. To perform video denoising we search, for every video patch, similar patches in the video sequence, and feed their central pixels to a convolutional neural network (CNN). The background model in this case is hidden in the CNN weights. In our experiments, the proposed method is the best performing of the compared CNN-based methods. We also study exemplar-based texture synthesis. In this problem texture samples have to be generated based on only one reference sample. Our survey classifies the families of algorithms for this task according to their model assumptions. In addition, we propose improvements to fix the border behavior issues that we pointed out in several deep learning based methods.In the third part, we propose real-time GPU implementations for B-spline interpolation and for several image and video denoising algorithms: NL-means, BM3D and VBM3D. The speed of the proposed implementations enables their use in real-time scenarios, and they are currently being transitioned to industry.
253

Anomaly Detection Techniques for the Protection of Database Systems against Insider Threats

Asmaa Mohamed Sallam (6387488) 15 May 2019 (has links)
The mitigation of insider threats against databases is a challenging problem since insiders often have legitimate privileges to access sensitive data. Conventional security mechanisms, such as authentication and access control, are thus insufficient for the protection of databases against insider threats; such mechanisms need to be complemented with real-time anomaly detection techniques. Since the malicious activities aiming at stealing data may consist of multiple steps executed across temporal intervals, database anomaly detection is required to track users' actions across time in order to detect correlated actions that collectively indicate the occurrence of anomalies. The existing real-time anomaly detection techniques for databases can detect anomalies in the patterns of referencing the database entities, i.e., tables and columns, but are unable to detect the increase in the sizes of data retrieved by queries; neither can they detect changes in the users' data access frequencies. According to recent security reports, such changes are indicators of potential data misuse and may be the result of malicious intents for stealing or corrupting the data. In this thesis, we present techniques for monitoring database accesses and detecting anomalies that are considered early signs of data misuse by insiders. Our techniques are able to track the data retrieved by queries and sequences of queries, the frequencies of execution of periodic queries and the frequencies of referencing the database tuples and tables. We provide detailed algorithms and data structures that support the implementation of our techniques and the results of the evaluation of their implementation.<br>
254

A HUB-CI MODEL FOR NETWORKED TELEROBOTICS IN COLLABORATIVE MONITORING OF AGRICULTURAL GREENHOUSES

Ashwin Sasidharan Nair (6589922) 15 May 2019 (has links)
Networked telerobots are operated by humans through remote interactions and have found applications in unstructured environments, such as outer space, underwater, telesurgery, manufacturing etc. In precision agricultural robotics, target monitoring, recognition and detection is a complex task, requiring expertise, hence more efficiently performed by collaborative human-robot systems. A HUB is an online portal, a platform to create and share scientific and advanced computing tools. HUB-CI is a similar tool developed by PRISM center at Purdue University to enable cyber-augmented collaborative interactions over cyber-supported complex systems. Unlike previous HUBs, HUB-CI enables both physical and virtual collaboration between several groups of human users along with relevant cyber-physical agents. This research, sponsored in part by the Binational Agricultural Research and Development Fund (BARD), implements the HUB-CI model to improve the Collaborative Intelligence (CI) of an agricultural telerobotic system for early detection of anomalies in pepper plants grown in greenhouses. Specific CI tools developed for this purpose include: (1) Spectral image segmentation for detecting and mapping to anomalies in growing pepper plants; (2) Workflow/task administration protocols for managing/coordinating interactions between software, hardware, and human agents, engaged in the monitoring and detection, which would reliably lead to precise, responsive mitigation. These CI tools aim to minimize interactions’ conflicts and errors that may impede detection effectiveness, thus reducing crops quality. Simulated experiments performed show that planned and optimized collaborative interactions with HUB-CI (as opposed to ad-hoc interactions) yield significantly fewer errors and better detection by improving the system efficiency by between 210% to 255%. The anomaly detection method was tested on the spectral image data available in terms of number of anomalous pixels for healthy plants, and plants with stresses providing statistically significant results between the different classifications of plant health using ANOVA tests (P-value = 0). Hence, it improves system productivity by leveraging collaboration and learning based tools for precise monitoring for healthy growth of pepper plants in greenhouses.
255

Video Analytics with Spatio-Temporal Characteristics of Activities

Cheng, Guangchun 05 1900 (has links)
As video capturing devices become more ubiquitous from surveillance cameras to smart phones, the demand of automated video analysis is increasing as never before. One obstacle in this process is to efficiently locate where a human operator’s attention should be, and another is to determine the specific types of activities or actions without ambiguity. It is the special interest of this dissertation to locate spatial and temporal regions of interest in videos and to develop a better action representation for video-based activity analysis. This dissertation follows the scheme of “locating then recognizing” activities of interest in videos, i.e., locations of potentially interesting activities are estimated before performing in-depth analysis. Theoretical properties of regions of interest in videos are first exploited, based on which a unifying framework is proposed to locate both spatial and temporal regions of interest with the same settings of parameters. The approach estimates the distribution of motion based on 3D structure tensors, and locates regions of interest according to persistent occurrences of low probability. Two contributions are further made to better represent the actions. The first is to construct a unifying model of spatio-temporal relationships between reusable mid-level actions which bridge low-level pixels and high-level activities. Dense trajectories are clustered to construct mid-level actionlets, and the temporal relationships between actionlets are modeled as Action Graphs based on Allen interval predicates. The second is an effort for a novel and efficient representation of action graphs based on a sparse coding framework. Action graphs are first represented using Laplacian matrices and then decomposed as a linear combination of primitive dictionary items following sparse coding scheme. The optimization is eventually formulated and solved as a determinant maximization problem, and 1-nearest neighbor is used for action classification. The experiments have shown better results than existing approaches for regions-of-interest detection and action recognition.
256

Analýza anomálií v uživatelském chování / User Behavior Anomaly Detection

Petrovič, Lukáš January 2019 (has links)
The aim of this work is to create an application that allows modeling of user behavior and subsequent search for anomalies in this behavior. An application entry is a list of actions the user has executed on his workstation. From this information and from information about the events that occurred on this device the behavioral model for a specific time is created. Subsequently, this model is compared to models in different time periods or with other users' models. From this comparison, we can get additional information about user behavior and also detect anomalous behavior. The information about the anomalies is useful to build security software that prevents valuable data from being stolen (from the corporate enviroment).
257

Detekce anomálií v IoT sítích / Anomaly Detection in IoT Networks

Halaj, Jozef January 2020 (has links)
The goal of the thesis was an analysis of IoT communication protocols, their vulnerabilities and the creation of a suitable anomaly detector. It must be possible to run the detector on routers with the OpenWRT system. To create the final solution, it was necessary to analyze the communication protocols BLE and Z-Wave with a focus on their security and vulnerabilities. Furthermore, it was necessary to analyze the possibilities of anomaly detection, design and implement the detection system. The result is a modular detection system based on the NEMEA framework. The detection system is able to detect re-pairing of BLE devices representing a potential pairing attack. The system allows interception of Z-Wave communication using SDR, detection of Z-Wave network scanning and several attacks on network routing. The system extends the existing detector over IoT statistical data with more detailed statistics with a broader view of the network. The original solution had only Z-Wave statistics with a limited view of the network obtained from the Z-Wave controller. The modular solution of the system provides deployment flexibility and easy system scalability. The functionality of the solution was verified by experiments and a set of automated tests. The system was also successfully tested on a router with OpenWRT and in the real world enviroment. The results of the thesis were used within the SIoT project.
258

Detekce anomálií v chování davu ve video-datech z dronu / Crowd Behavior Anomaly Detection in Drone Videodata

Bažout, David January 2021 (has links)
There have been lots of new drone applications in recent years. Drones are also often used in the field of national security forces. The aim of this work is to design and implement a tool intended for crowd behavior analysis in drone videodata. This tool ensures identification of suspicious behavior of persons and facilitates its localization. The main benefits include the design of a suitable video stabilization algorithm to stabilize small jitters, as well as trace back of the lost scene. Furthermore, two anomaly detectors were proposed, differing in the method of feature vector extraction and background modeling. Compared to the state of the art approaches, they achieved comparable results, but at the same time they brought the possibility of online data processing.
259

Automation Pipelines for Efficient and Robust Experimental Research Within Cognitive Neuroscience

Björklund, Patrik, Rydin, Anna January 2020 (has links)
The current trend towards large-scale research projects with big quantities of data from multiple sources require robust and efficient data handling. This thesis explores techniques for automatizing research data pipelines. Specifically, two tasks related to automation within a long-term research project in cognitive neuroscience are addressed. The first task is to develop a tool for automatic transcribing of paper-based questionnaires using computer vision. Questionnaires containing continuous scales, so called visual analog scales (VASs), are used extensively in e.g. psychology. Despite this, there currently exists no tool for automatic decoding of these types of questionnaires. The resulting computer vision system for automatic questionnaire transcribing we present, called "VASReader", reliably detects VAS marks with an accuracy of 98%, and predicts their position with a mean absolute error of 0.3 mm when compared to manual measurements. The second task addressed in this thesis project is to investigate whether machine learning can be used to detect anomalies in Magnetic Resonance Imaging (MRI) data. An implementation of the unsupervised anomaly detection technique Isolation Forest shows promising results for the detection of anomalous data points. The model is trained on image quality metric (IQM) data extracted from MRI. However, it is concluded that the site of scanning and MRI machine model used affect the IQMs, and that the model is more prone to classify data points originating from machines and institutions that have less support in the database as anomalous. An important conclusion from both tasks is that automation is possible and can be a great asset to researchers, if an appropriate level and type of automation is selected.
260

Detekce anomalit v log datech / Anomaly Detection on Log Data

Babušík, Jan January 2021 (has links)
This thesis deals with anomaly detection of log data. Big software systems produce a great amount of log data which are not further processed. There are usually so many logs that it becomes impossible to check every log entry manually. In this thesis we introduce models that minimize primarily count of false positive predictions with expected complexity of data annotation taken into account. The compared models are based on PCA algorithm, N-gram model and recurrent neural networks with LSTM cell. In the thesis we present results of the models on widely used datasets and also on a real dataset provided by HAVIT, s.r.o. 1

Page generated in 0.2389 seconds