• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 63
  • 4
  • Tagged with
  • 131
  • 131
  • 78
  • 68
  • 50
  • 50
  • 50
  • 46
  • 35
  • 33
  • 29
  • 25
  • 24
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Silylhydrazine und -hydrazone / Insertionsreaktionen und Isomerisierung / Silylhydrazines and -hydrazones / insertion reactions and isomerisation

Gellermann, Eike 26 January 2000 (has links)
No description available.
62

Reaktionen von Ketazinen mit halogenfunktionellen Boranderivaten / Reaction of Ketazines with Halofunctional Borane Derivatives

Groh, Thomas 21 June 2000 (has links)
No description available.
63

Darstellung und Kopplung von Cyclosilazanen und Borazinen - Precursoren für Si-B-N- und Si-B-C-N-Keramiken / Synthesis and Coupling of Cyclosilazanes and Borazines - Precursors for Si-B-N- and Si-B-C-N-Ceramics

Jaschke, Bettina 26 January 2000 (has links)
No description available.
64

Aluminum (I, II, III) Compounds with Multidentate Ligands: Syntheses, Reactivity, and Structures

Cui, Chunming 02 May 2001 (has links)
No description available.
65

Oxygen Bridged Metal Systems: Heterometallic Compounds Containing Main Group Metal, Transtion Metal and f-Elements / Oxygen Bridged Metal Systems: Heterometallic Compounds Containing Main Group Metal, Transtion Metal and f-Elements

Zhang, Zhensheng 08 November 2010 (has links)
No description available.
66

β−Diketiminate Ligands as Supports for Alkaline Earth and Aluminum Complexes: Synthesis, Characterization, and Reactivity Studies / β−Diketiminate Ligands as Supports for Alkaline Earth and Aluminum Complexes: Synthesis, Characterization, and Reactivity Studies

Sankaranarayana Pillai, Sarish 21 January 2010 (has links)
No description available.
67

Synthesis, Structures and Reactions of Aluminum(I) and Aluminum(III) Compounds / Darstellungen, Strukturen und Reaktionen von Aluminium(I)- und Aluminium(III)-Verbindungen

Peng, Ying 03 November 2004 (has links)
No description available.
68

Aufbau und Funktionalisierung von Carbosiloxandendrimeren

Lühmann, Bettina 19 December 2002 (has links)
In der vorliegenden Arbeit wird die Synthese von Carbosiloxandendrimeren der dritten Generation durch repetitive Alkoholyse-Hydrosilylierungs-cyclen auf dem divergenten Syntheseweg beschrieben. Im Mittelpunkt der Arbeit stand jedoch die Funktionalisierung dieser Dendrimere mit einer Vielzahl metallorganischer (Ferrocenyl-, Übergangsmetallcarbonyl-verbindungen) bzw. organischer (stickstoffhaltige Ligandsysteme) Einheiten. Zudem wird die Darstellung amphiphiler und bifunktionaler Carbosiloxandendrimere vorgestellt. Die neu synthetisierten Verbindungen wurden analytisch umfassend charakterisiert, wobei die 29Si-{1H}-NMR-Spektroskopie sowie die Massenspektrometrie einen besonderen Stellenwert einnehmen.
69

Biomimetische Trispyrazolylborato-Übergangsmetallkomplexe als Modelle für Metall-Cofaktor-unspezifische Dioxygenasen

Hoof, Santina 10 June 2020 (has links)
Quercetin-Dioxygenasen (QueD) katalysieren die oxidative Spaltung von Quercetin, einem Pflanzenfarbstoff aus der Gruppe der Flavonole und bilden dabei das entsprechende Depsid und Kohlenstoffmonoxid. Interessanterweise werden in den QueDs natürlicher Quellen verschiedene zweiwertige Metallionen als Cofaktor im aktiven Zentrum des Enzyms gefunden. So stellt sich die Frage, welche Rolle dem Metallzentrum im Mechanismus der Katalyse zukommt. Um die Umgebung des Metallions im aktiven Zentrum mit einer biomimetischen, niedermolekularen Modellverbindung nachzuempfinden, wurde das Trispyrazolylborato-Ligandsystem (Tp) gewählt und als Substratanalogon diente 3-Hydroxyflavon (FlaH). So konnte ein strukturelles und funktionelles Modellsystem der NiQueD in Form von des Tp*NiFla-Komplexes synthetisiert und vollständig charakterisiert werden. Es erfolgte eine Variation dieses Systems, um verschiedene Einflüsse auf die Reaktivität mit Disauerstoff zu untersuchen. Der Austausch der Carbonylfunktion von FlaH durch C=S sowie C=Se Einheiten führte bei der Umsetzung mit O2 nicht zu der antizipierten Erhöhung der Reaktionsraten, stattdessen wurden zusätzlich Nebenreaktionen beobachtet. Die Veränderung der Substituenten am Tp-Ligandrückgrat zeigte, dass sterisch anspruchsvollere Gruppen zur Erhöhung der Reaktionsraten bei Umsetzungen mit O2 führen, vermutlich weil das Substrat für eine direkte Reaktion mit O2 leichter zugänglich wird. Durch systematische Variation der 3d-Übergangsmetallionen im Zentrum der Modellkomplexe wurde ein Einfluss auf die Redoxeigenschaften des metallgebundenen Flavonolats beobachtet. Die reversiblen Redoxpotentiale stehen in direktem Zusammenhang mit der Reaktionsrate. Ergebnisse mechanistischer Untersuchungen legen einen outer-sphere Elektronentransferprozess nahe, bei dem ein Elektron des Flavonolats direkt auf O2 übertragen wird. Durch Rekombination der entstandenen Radikale werden die nach biomimetischer Reaktion zu erwartenden Produkte gebildet. / Quercetin dioxygenases (QueD) catalyze the oxidative cleavage of quercetin, a flavonol commonly found in fruits and leaves, forming the corresponding depside and carbon monoxide. Interestingly, quercetinases of various natural sources show a different selectivity towards the divalent metal ion incorporated as cofactor, raising the questions on the role of the metal center in the mechanism of catalysis. Synthetic can help to gain insight into the mechanistic pathway of the reaction and thus clearify such questions. In order to synthesize a biomimetic model compound, the trispyrazolylborato ligands (Tp) were used and 3 hydroxyflavone (FlaH) was chosen as substrate. The compound Tp*NiFla with a was synthesized and fully characterized as a structural and functional model for the NiQueD. Based on this, the system was varied in different ways in order to investigate the influence on the reactivity towards O2. It was shown that the substitution of the carbonyl function of FlaH by C=S and C=Se units did not lead to an increase in the reaction rates, but additionally to undesirable side reactions. By altering the residues on the Tp ligand backbone it turned out that sterically more demanding groups increase the rates of reaction with dioxygen, likely because the substrate is more accessible for direct reaction with O2. By systematic variation of the metal ions in the center of the model compounds, an influence on the redox properties of the metal-bound flavonolate was observed. For the first time, reversible redox reactions of flavonolate bound to 3d transition metals was demonstrated. Furthermore, a direct relation of the redox potentials to the reaction rates emerged. The results of mechanistic studies indicate that all model complexes react via an initial outer-sphere electron transfer process, in which an electron of the flavonolate is directly transferred to O2. By recombination of the formed radicals, the products expected for a biomimetic process can be obtained.
70

Exploration of the Hydroflux Synthesis

Albrecht, Ralf 01 March 2022 (has links)
The hydroflux method is a promising new synthesis approach for explorative crystal growth. Various new compounds were synthesized during the preparation of this PhD thesis, doubling the number of substances discovered to date via the hydroflux approach. The product range consists primarily of oxides, hydroxides or a mixture of both, with oxygen-free compounds being obtained for the first time in form of various chalcogenides. The so far barely explored redox chemistry of the hydroflux was elucidated in more detail and novel preparation procedures were developed to intentionally introduce reductive and oxidative conditions. Thus, chalcogenides and highly oxidized cations were obtained. In addition, important reaction parameters of the hydroflux method were derived based on the developed syntheses procedures and properties of the various new compounds. The two largest compound classes within the product range are the hydrogarnets and the oxo(hydroxo)ferrates. Among the various interesting properties of the latter compounds, the potassium ion conductivity stands out, which is closely related to their structure and chemical stability. The structure of the oxohydroxoferrates K2–x(Fe,M)4O7–y(OH)y (M = Fe, Si, Ge, Ti, Mn, Ir) can be described as a parking garage. Honeycomb layers consisting of edge-sharing [FeO6] octahedra form the floors, which are connected by pairs of vertices-sharing [FeO4] tetrahedra representing the pillars. In the pictorial representation of this two-dimensional ion conductor, the potassium ions represent the cars that are mobile within one floor because not all parking lots are occupied, i.e., the structure has a potassium deficit. The substituted elements M influence the potassium content and thus the ion conductivity, which tends to increase with higher potassium deficits. The oxohydroxoferrates hydrolyze slowly in moist air under segregation of potassium hydroxide, which significantly increases the mobility of the potassium ions due to the hygroscopic nature and thus the ion conductivity. The three-dimensional ion conductor K12+6xFe6Te4–xO27 consists of a cubic labyrinth of potassium channels, which are surrounded by an open framework of [FeO5] pyramids and [TeO6] octahedra. Every potassium position is connected with eight large cavities acting as nodes for the potassium channels. However, the potassium positions within the channels are fully occupied, which hinders mobility within the labyrinth to the disadvantage of the ion conductivity. Similar to K2–x(Fe,M)4O7–y(OH)y, K12+6xFe6Te4–xO27 hydrolyzes under ambient conditions decreasing the potassium content within the structure. However, only a slight amount of potassium can be removed before the open framework collapses. Hydrogarnets crystallize in the flexible garnet structure-type and adapt the general formula AE3[M(OH)6]2. The crystal structure consists of a complex three-dimensional framework, in which [MO6] octahedra and empty (O4H4)4– tetrahedra are connected via their vertices and the larger alkaline earth metal cations AE filling the remaining voids. In contrast to garnets (nesosilicates), the hydrogarnets have a lower thermal stability and hardness. For many applications, this instability might be a drawback, but at the same time, it qualifies them for a low temperature and resource efficient application as carbon-free single-source precursors. In case of the rare earth hydrogarnets (AE = Sr, Ba; M = Sc, Y, Ho–Lu), the dehydration at about 550 °C leads to the formation of AEM2O4, which were previously obtainable only at reaction temperatures above 1300 °C.[86–89] Redox chemistry in hydroflux systems had been barely investigated so far, with neither equations nor possible mechanisms discussed to explain redox phenomena. In more than half of the published articles of this thesis, redox reactions were observed, often involving molecular oxygen or nitrate as oxidant. Similar to alkali metal hydroxide melts, molecular oxygen is expected to react with hydroxide ions to form peroxides or even superoxides, while nitrates might be reduced to nitrites. Moreover, higher oxidations states seem to be preferred in the hydroflux medium, as, for example, tellurium(IV), chromium(III) and arsenic(III) were readily oxidized to their maximum oxidation states. Additionally, the partial replacement of KOH by KO2 in the hydroflux medium introduced a high oxygen partial pressure, resulting in the oxidation of iodide(–I) ions to orthoperiodate(VII) ions. This preparation procedure has a great potential to yield compounds with elements in unusual high oxidation states, especially transition metals. The tendency of some elements to prefer higher oxidation states than usual was utilized to intentionally introduce reductive conditions. With this approach, reduction of selenium(IV) and tellurium(IV) oxides to their chalcogenides was achieved by using arsenic(III) oxide as reducing agent. In solution, monochalcogenide and dichalcogenide anions as well as the new (SeTe)2– anions were obtained. In addition, millimeter-sized crystals of the chalcogenides K2Se3 and K2Te3 and the previously unknown K2Se2Te were crystallized. This unexpected redox chemistry is far from what the standard potentials would suggest. The activity of water is considerably reduced by the ultra-alkaline conditions, which does not only decrease its vapor pressure and drives the reaction but obviously prevents the hydrolysis of the water sensitive chalcogenides. Overall, a preparatively simple, time-saving and secure approach compared to traditional methods like the synthesis in liquid ammonia was developed. Moreover, this method allows known and new potassium trichalcogenides to be obtained in larger amounts and in form of millimeter-sized single-crystals. A transfer of the approach to other systems should be promising. Reaction parameters described in literature were mostly confirmed and some details were added. For example, the selection of mineralizers was extended, reaction times and temperatures were specified, and a method for purifying the reaction products was added. With the exception of base concentration and concentration-dependent product formation, both of which have barely been studied so far. An example is the iron(III)-KOH hydroflux system, where four different products are accessible with increasing base-concentrations: α-Fe2O3, K2–xFe4O7–x(OH)x, K2Fe2O3(OH)2 and KFeO2. Overall, two trends are evident with increasing base concentration. First, the alkali metal content within the product rises or the alkali metal is incorporated in the structure in the first place. Second, the hydrogen content of the products constantly decreases. The latter is attributed to the increasing hygroscopicity of the reaction medium at higher hydroxide concentrations, which also reduces the activity of water in the hydroflux medium, so that water-sensitive compounds are stabilized.

Page generated in 0.1052 seconds