• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um estudo das hipersuperfícies maximais tipo espaço no espaço anti-de Sitter / A study of spacelike maximal hypersurfaces in the anti-de Sitter space

Mascaro, Bruno 07 June 2017 (has links)
Este trabalho apresenta a demonstração de dois teoremas sobre a caracterização de hipersuperf ícies maximais no espaço anti-de Sitter. Ambos os Teoremas 4.0.1 e 4.0.2 caracterizam hipersuperf ícies maximais isométricamente imersas no espaço anti-de Sitter Hn+1 1 com (n-1) curvaturas principais de mesmo sinal, com curvatura escalar constante e curvatura de Gauss-Kronecker constante não-nula, respectivamente, como sendo isométricas ao cilindro hiperbólico H1(c1)Hn1(c2). Também é feito um breve estudo do artigo [17], onde o Teorema 3.0.3 é ferramenta chave para a obtenção dos resultados demonstrados nos Teoremas 4.0.1 e 4.0.2. / This work presents, the demonstration of two theorems about the characterization of maximal hypersurfaces on the anti-de Sitter space. Both Theorems 4.0.1 and 4.0.2 characterize maximal hypersurfaces isometrically immersed in the anti-de Sitter space Hn+1 1 with (n-1) principal curvatures with the same sign, with constant scalar curvature and nonzero constant Gauss-Kronecker curvature, respectively, as being isometric to the hyperbolic cylinder H1(c1) Hn1(c2). Is also done a brief study of the article [17], where the Theorem 3.0.3 is key piece to obtain the results demonstrated in Theorems 4.0.1 and 4.0.2.
2

Um estudo das hipersuperfícies maximais tipo espaço no espaço anti-de Sitter / A study of spacelike maximal hypersurfaces in the anti-de Sitter space

Bruno Mascaro 07 June 2017 (has links)
Este trabalho apresenta a demonstração de dois teoremas sobre a caracterização de hipersuperf ícies maximais no espaço anti-de Sitter. Ambos os Teoremas 4.0.1 e 4.0.2 caracterizam hipersuperf ícies maximais isométricamente imersas no espaço anti-de Sitter Hn+1 1 com (n-1) curvaturas principais de mesmo sinal, com curvatura escalar constante e curvatura de Gauss-Kronecker constante não-nula, respectivamente, como sendo isométricas ao cilindro hiperbólico H1(c1)Hn1(c2). Também é feito um breve estudo do artigo [17], onde o Teorema 3.0.3 é ferramenta chave para a obtenção dos resultados demonstrados nos Teoremas 4.0.1 e 4.0.2. / This work presents, the demonstration of two theorems about the characterization of maximal hypersurfaces on the anti-de Sitter space. Both Theorems 4.0.1 and 4.0.2 characterize maximal hypersurfaces isometrically immersed in the anti-de Sitter space Hn+1 1 with (n-1) principal curvatures with the same sign, with constant scalar curvature and nonzero constant Gauss-Kronecker curvature, respectively, as being isometric to the hyperbolic cylinder H1(c1) Hn1(c2). Is also done a brief study of the article [17], where the Theorem 3.0.3 is key piece to obtain the results demonstrated in Theorems 4.0.1 and 4.0.2.
3

CaracterizaÃÃo de hipersuperfÃcies tipo espaÃo com curvatura mÃdia constante e duas curvaturas principais no espaÃo anti de Sitter / Caracterization of spacelike hypersurfaces with constant mean curvature and two principal curvatures in anti de Sitter space

Wanderley de Oliveira Pereira 31 July 2013 (has links)
FundaÃÃo Cearense de Apoio ao Desenvolvimento Cientifico e TecnolÃgico / Este trabalho tem como objetivo fornecer uma caracterizaÃÃo de hipersuperfÃcies tipo espaÃo completas no espaÃo anti de Sitter, tais como os cilindros hiperbÃlicos, sob a hipÃtese de curvatura mÃdia constante e duas curvaturas principais distintas. No caso em que umas das curvaturas principais à simples, à adicionada uma condiÃÃo sobre tais curvaturas. A caracterizaÃÃo aqui sugerida, teve como refrÃncia principal o trabalho de B. Yang e X. Liu, que dà uma resposta positiva à conjectura de L. F. Cao e G. Wei sobre hipersuperfÃcies tipo espaÃo em tais condiÃÃes. Para a realizaÃÃo do trabalho, foi utilizada uma fÃrmula do tipo Simons juntamente com o PrincÃpio do MÃximo Generalizado (Omori-Yau). / The aim of this work is to provide a characterization complete spacelike hypersurfaces in anti de Sitter space, such as hyperbolic cylinders, under the assumption constant mean curvature and two distinct principal curvatures. In the case that one of the principal curvatures is simple, a condition is added on the curvature. The characterization suggested here had as main reference the work of B.Yang and X. Liu, giving a positive answer to the L. F. Cao and G. Weiâs conjecture on spacelike hypersurfaces in such conditions. To carry out the work, we used a formula of type Simons along with the Generalized Maximum Principle (Omori-Yau).
4

The 2+1 Lorentz Group and Its Representations

Sjöstedt, Klas January 2020 (has links)
The Lorentz group is a symmetry group on Minkowski space, and as such is central to studying the geometry of this and related spaces. The group therefore shows up also from physical considerations, such as trying to formulate quantum physics in anti-de Sitter space. In this thesis, the Lorentz group in 2+1 dimensions and its representations are investigated, and comparisons are made to the analogous rotation group. Firstly, all unitary irreducible representations are found and classified. Then, those representations are realised as the square-integrable, analytic functions on the unit circle and the unit disk, which turn out to correspond to the projective lightcone and the hyperbolic plane, respectively. Also, a way to realise a particular class of representations on 1+1-dimensional anti-de Sitter space is shown. / Lorentzgruppen är en symmetrigrupp på Minkowski-rum, och är således central för att studera geometrin i detta och relaterade rum. Gruppen dyker också därför upp från fysikaliska frågeställningar, såsom att försöka formulera kvantfysik i anti-de Sitter-rum. Denna uppsats undersöker Lorentzgruppen i 2+1 dimensioner och dess representationer, och jämför med den analoga rotationsgruppen. Först konstrueras och klassificeras alla unitära irreducibla representationer. Sedan realiseras dessa representationer som de analytiska funktioner på enhetscirkeln och enhetsskivan vars belopp i kvadrat är integrerbara. Det visar sig att denna cirkel respektive skiva svarar mot den projektiva ljuskonen respektive det hyperboliska planet. Dessutom visas att en särskild klass av representationer blir relevanta för att formulera kvantfysik i 1+1-dimensionellt anti-de Sitter-rum.
5

Studies on boundary values of eigenfunctions on spaces of constant negative curvature

Bäcklund, Pierre January 2008 (has links)
<p>This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries.</p><p>The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions.</p><p>The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.</p>
6

Studies on boundary values of eigenfunctions on spaces of constant negative curvature

Bäcklund, Pierre January 2008 (has links)
This thesis consists of two papers on the spectral geometry of locally symmetric spaces of Riemannian and Lorentzian signature. Both works are concerned with the idea of relating analysis on such spaces to structures on their boundaries. The first paper is motivated by a conjecture of Patterson on the Selberg zeta function of Kleinian groups. We consider geometrically finite hyperbolic cylinders with non-compact Riemann surfaces of finite area as cross sections. For these cylinders, we present a detailed investigation of the Bunke-Olbrich extension operator under the assumption that the cross section of the cylinder has one cusp. We establish the meromorphic continuation of the extension of Eisenstein series and incomplete theta series through the limit set. Furthermore, we derive explicit formulas for the residues of the extension operator in terms of boundary values of automorphic eigenfunctions. The motivation for the second paper comes from conformal geometry in Lorentzian signature. We prove the existence and uniqueness of a sequence of differential intertwining operators for spherical principal series representations, which are realized on boundaries of anti de Sitter spaces. Algebraically, these operators correspond to homomorphisms of generalized Verma modules. We relate these families to the asymptotics of eigenfunctions on anti de Sitter spaces.
7

Clasificación de toros llanos lorentzianos en espacios tridimensionales

León Guzmán, María Amelia 04 June 2012 (has links)
Un problema clásico en geometría lorentziana es la descripción de las inmersiones isométricas entre los espacios lorentzianos de curvatura constante. En este trabajo nos centramos en la clasificación de las inmersiones isométricas del plano lorentziano en el espacio anti-de Sitter tridimensional. Damos una fórmula de representación de estas inmersiones en términos de pares de curvas (con posibles singularidades) en el plano hiperbólico. Esto nos permite resolver los problemas propuestos por Dajczer y Nomizu en 1981. De entre todas las inmersiones isométricas del plano lorentziano en el espacio anti-de Sitter, algunas de ellas corresponden a toros lorentzianos (los ejemplos más sencillos son los toros de Hopf). Como aplicación de nuestra anterior descripción, probamos que todos estos toros pueden obtenerse a partir de dos curvas cerradas en el espacio hiperbólico. Finalmente, demostramos que los toros de Hopf son los únicos toros llanos lorentzianos inmersos en una amplia familia de sumersiones de Killing lorentzianas tridimensionales. / A classical problem in Lorentzian geometry is the description of the isometric immersions between Lorentzian spaces of constant curvature. We investigate the problem of classifying the isometric immersion from the Lorentz plane into the three-dimensional anti-de Sitter space, providing a representation formula of these isometric immersions in terms of pairs of curves (possibly with singularities) in the hyperbolic plane. We then give an answer to the open problems proposed by Dajczer and Nomizu in 1981. Among all isometric immersions of the Lorentz plane into the anti-de Sitter space, some of them are actually Lorentzian tori (the basic examples are the Hopf tori). As an application of our previous description, we prove that any such torus can be recovered from two closed curves in the hyperbolic plane. Finally, we prove that Lorentzian Hopf tori are the only immersed Lorentzian flat tori in a wide family of Lorentzian three-dimensional Killing submersions.
8

Sistemas de mundo brana com gravitação modificada f(R) generalizada e branas curvas

Fernandes, Rafael Leite 27 February 2013 (has links)
Submitted by isabela.moljf@hotmail.com (isabela.moljf@hotmail.com) on 2017-07-05T11:27:51Z No. of bitstreams: 1 rafaelleitefernandes.pdf: 295519 bytes, checksum: 990b7a9657e1e2be2738bb9b3dd7cf04 (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-08-08T15:19:39Z (GMT) No. of bitstreams: 1 rafaelleitefernandes.pdf: 295519 bytes, checksum: 990b7a9657e1e2be2738bb9b3dd7cf04 (MD5) / Made available in DSpace on 2017-08-08T15:19:39Z (GMT). No. of bitstreams: 1 rafaelleitefernandes.pdf: 295519 bytes, checksum: 990b7a9657e1e2be2738bb9b3dd7cf04 (MD5) Previous issue date: 2013-02-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Neste trabalho vamos mostrar que o sistema chamado de “mundo brana” para representar o nosso Universo, introduzido por Randall-Sundrum (RS) no fim dos anos noventa, pode ser na verdade representado por branas curvas no espaço de de Sitter e Anti-de Sitter. Originalmente o sistema RS representaria um Universo com cinco dimensões onde o modelo padrão ficaria confinado em uma brana e os grávitons ficariam confinados na outra brana. Este sistema foi construído com uma métrica de Minkowski “torcida” com cinco dimensões onde os grávitons, responsáveis pelo campo gravitacional no modelo padrão, se deslocariam através da quinta dimensão, que por sua vez é infinita. E a ação padrão da relatividade geral, a ação de Einstein-Hilbert, foi a utilizada por RS. Neste trabalho de dissertação de mestrado vamos adotar uma ação modificada usada atualmente para explicar efeitos cosmológicos como a energia escura e a expansão do Universo por exemplo, ou seja, a ação com uma gravitação modificada chamada de f(R). Aqui vamos usar uma f(R) totalmente generalizada e suas consequências cosmológicas e viabilidade serão analisadas. Finalmente, vamos demonstrar que as partículas do modelo padrão estão confinadas nesta brana curva. Os resultados obtidos aqui generalizam totalmente outros resultados obtidos na literatura atual sobre mundo brana com branas grossas e são por isso, originais e serão submetidos à publicação. / In this work we will show that the so-called “brane world” framework introduced by Randall-Sundrum (RS), to represent our Universe, at the late nineties can be represented in fact by bent branes in de Sitter and Anti-de Sitter space with a generalized model for gravity. At the beginning, the RS scenario represent a Universe in five dimensions where the Standard Model is confined in one brane and the gravitons were confined in the another one. This model was build with a warped Minkowski metric with five dimensions where the gravitons, which are responsible by the gravitational field, are able to move through the fifth dimension, which is infinity. The standard general relativity action, namely, the Einstein-Hilbert action, was the one used by RS. In this Master dissertation we will adopt a modified action used at present to explain some cosmological effects like dark energy and Universe expansion, for example, i.e., we will use an action with a modified gravitation called f(R). However, here we will use a generalized f(R) and their cosmological consequences and viability will be analyzed. Finally, we will show that the particles of the Standard Model are confined at this bent brane. The results obtained here generalize altogether the others results obtained in the current literature concerning braneworlds with thick branes and are, consequently, new ones, which will be published elsewhere.

Page generated in 0.1151 seconds