• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 2
  • Tagged with
  • 21
  • 21
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Surface Modification of Model Silicone Hydrogel Contact Lenses with Densely Grafted Phosphorylcholine Polymers

Spadafora, Alysha January 2017 (has links)
When a biomaterial is inserted into the body, the interaction of the surface with the surrounding biological environment is crucial. Given the importance of the surface, the ability to alter the surface properties to support a compatible environment is therefore desirable. Silicone hydrogel contact lenses (CL) allow for improved oxygen permeability through the incorporation of siloxane functional groups. These groups however are extremely surface active and upon rotation, can impart hydrophobicity to the lens surface, decreasing lens wettability and increasing protein and lipid deposition. Lens biofouling may be problematic and therefore surface modification of these materials to increase compatibility is exceedingly recognized for importance in both industry and research. The current work focuses on the creation of a novel anti-fouling polymer surface by the incorporation of 2-methacryoyloxyethyl phosphorylcholine (MPC), well known for its biomimetic and anti-fouling properties. A controlled polymerization method was used to generate a unique double-grafted architecture to explore the effect of increasing surface density of polyMPC chains on corresponding anti-fouling properties. The novel free polymer was synthesized by a 3-step atom transfer radical polymerization (ATRP). First, poly(2-hydroxyethyl methacrylate) (polyHEMA) was polymerized by ATRP, where the hydroxyl (OH) groups of the polymer then underwent an esterification to create macroinitiating sites. From these sites, a second ATRP of poly(MPC) varying in length occurred, yielding the double-grafted polymer poly(2(2-bromoisobutyryloxy-ethyl methacrylate)-graft-poly(2-methacryloyloxyethyl phosphorylcholine (pBIBEM-g-pMPC). The polymer was designed for resistance to protein adsorption through a possible synergistic effect between the surface induced hydration layer by surrounding PC groups coupled with steric repulsion of the densely grafted chains. To test its potential as a surface modifier, the polymer was grafted from model silicone hydrogel CL through a 4-step surface initiated ATRP (SI-ATRP) in a similar manner to the free polymer. First, the ATRP initiator was immobilized from the HEMA OH groups of the unmodified CL, generating Intermedate-1. A polyHEMA brush was grafted from the initiating sites yielding pHEMA-50, followed by the generation of a second initiator layer (Intermediate- 2). A sequential ATRP of poly(MPC) then generated the target pMPC-50/pMPC-100 surfaces. For the free pBIBEM-g-pMPC polymer analysis, 1H-NMR and GPC determined polymers formed with a predictable MW and low polydispersity (PDI). For surface grafting, using a sacrificial initiator, 1H-NMR and GPC indicated that the pHEMA-50 and pMPC-50/pMPC-100 polymers were well-controlled, with a MW close to the theoretical and a low PDI. For surface chemical composition, ATR-FTIR showed the presence of the ATRP initiator (Intermediate-1 and 2) by the appearance of a C-Br peak and disappearance of the OH peak. XPS confirmed the chemical composition of the 4-step synthesis by a change in the fraction of expected surface elements. Both the surface wettability and EWC of the materials increased upon pMPC modification, further improving upon increasing pMPC chain length. The contact angle was as low as 16.04 ± 2.37º for pMPC-50 surfaces and complete wetting for pMPC-100. Finally, the single protein adsorption using lysozyme and bovine serum albumin (BSA) showed significantly decreased protein levels for pMPC-50/100 lenses, as much as 83% (p 0.00036) for lysozyme and 73% (p 0.0076) for BSA, with no significant difference upon chain length variation. The aforementioned data demonstrates that the novel polymer has potential in providing an anti-fouling and extremely wettable surface, specifically regarding silicone hydrogel CL surfaces. / Thesis / Master of Applied Science (MASc)
12

Studies on Corrosion, Fouling and Durability of Advanced Functional Nonwetting Surfaces

Mousavi, Seyed Mohammad Ali 30 November 2021 (has links)
Superhydrophobic and lubricant-infused porous surfaces are two classes of non-wetting surfaces that are inspired by the adaptation of natural surfaces such as lotus leaves, pond skater legs, butterfly wings, and Nepenthes pitcher plant. This dissertation focuses on fabrication and in depth study of bioinspired functional metallic surfaces for applications such as power plant condensers and marine applications. Toward that, first, facile and scalable methods are developed for the fabrication of superhydrophobic surfaces (SHS) and lubricant-infused surfaces (LIS). Second, the corrosion inhibition mechanism of SHS was systematically studied and modeled via electrochemical methods to elucidate the role of superhydrophobicity and other parameters on corrosion inhibition. The anti-corrosion properties of SHS and LIS were systematically studied over a range of temperatures (23°C–90°C) to simulate an actual condenser environment. Moreover, the environment of application often involves using harsh cleaning chemicals. The fabricated non-wetting surfaces were examined over a wide range of acidity and basicity (pH=1 to pH=14). Third, the durability of SHS and LIS is systematically assessed using a set of testing protocols including water impingement tests, scratch wear tests, and accelerated chemical corrosion tests. Considering that industrial environments of application are often turbulent, in addition to static long term corrosion tests, long term dynamic durability was studied in a simulated turbulent condition. Fourth, the performance of the fabricated nonwetting surfaces was systematically studied against calcium sulfate scaling in turbulent conditions and different temperatures. An analytical relationship based on the Hill-Langmuir model is proposed for the prediction of fouling on nonwetting and conventional surfaces alike in dynamic conditions. Overall 1048 individual samples were studied via over 3000 measurements in this dissertation to establish a comprehensive fundamental knowledge base on fabrication and anti fouling characteristics of metallic nonwetting surfaces, which profoundly helps to design appropriate surfaces and fabrication methods based on the use environment. / Doctor of Philosophy / Metallic surfaces such as copper, brass, and aluminum are everywhere in our daily lives. From tumblers, household pipes to the bank of tubes in power plants condensers. Fouling of these surfaces has significant performance and economic impact. Scaling is a type of crystallization fouling like the familiar limescale everyone is familiar to see around the surface of a house kettle. Corrosion is another type of fouling and is detrimental to metallic surfaces. For example, 50% of water consumption in the U.S. is being used in thermo-electric power plants where fouling of metallic surfaces will impede the flow of working fluid, therefore increasing power needed for pumping, decrease efficiency, and decrease ultimate lifetime. One study in 2019 shows corrosion costs 3% of the gross national products of China and it is already known to be similar for other major economies like the USA, which is a hefty cost. Nature has inspired a lot of solutions for mankind. In this work, inspired by natural surfaces such as lotus leaves, butterfly wings, and pond skater legs, a class of superhydrophobic surfaces (SHS) was fabricated. Moreover, a closer look at how the complex human body puts everything in order exposes one of its most striking and essential characteristics: how wet and lubricated its interfaces are. Our lungs, eyes, joints, intestine, bones; either hairy or porous, all are lined wet surfaces that work as fouling inhibitors and defect free surfaces. This also have been observed elsewhere such as on Nepenthes pitcher plant. Inspired by these, another class of non-wetting surfaces, lubricant-infused surfaces (LIS) was fabricated. This dissertation for the first time investigates a rational methodology in the fabrication of metallic SHS and LIS and their anti-scaling and anti-corrosion properties in different environments of application, including a range of temperature (23°Câ€"90°C), various solutions (pH=1 to pH=14), and long-term static and dynamic (turbulent condition) durability. It is believed that this work would profoundly help to identify appropriate nonwetting metallic surfaces based on the intended use environment.
13

Controlling Microbial Colonization and Biofilm Formation Using Topographical Cues

Kargar, Mehdi 13 January 2015 (has links)
This dissertation introduces assembly of spherical particles as a novel topography-based anti-biofouling coating. It also provides new insights on the effects of surface topography, especially local curvature, on cell–surface and cell–cell interactions during the evolution of biofilms. I investigated the adhesion, colonization, and biofilm formation of the opportunistic human pathogen Pseudomonas aeruginosa on a solid coated in close-packed spheres of polystyrene, using flat polystyrene sheets as a control. The results show that, whereas flat sheets are covered in large clusters after one day, a close-packed layer of 630–1550 nm monodisperse spheres prevents cluster formation. Moreover, the film of spheres reduces the density of P. aeruginosa adhered to the solid by 80%. Our data show that when P. aeruginosa adheres to the spheres, the distribution is not random. For 630 nm and larger particles, P. aeruginosa tends to position its body in the confined spaces between particles. After two days, 3D biofilm structures cover much of the flat polystyrene, whereas 3D biofilms rarely occur on a solid with a colloidal crystal coating of 1550 nm spheres. On 450 nm colloidal crystals, the bacterial growth was intermediate between the flat and 1550 nm spheres. The initial preference for P. aeruginosa to adhere to confined spaces is maintained on the second day, even when the cells form clusters: the cells remain in the confined spaces to form non-touching clusters. When the cells do touch, the contact is usually the pole, not the sides of the bacteria. The observations are rationalized based on the potential gains and costs associated with cell-sphere and cell-cell contacts. I concluded that the anti-biofilm property of the colloidal crystals is correlated with the ability to arrange the individual cells. I showed that a colloidal crystal coating delays P. aeruginosa cluster formation on a medical-grade stainless-steel needle. This suggests that a colloidal crystal approach to biofilm inhibition might be applicable to other materials and geometries. The results presented in appendix 1 suggest that colloidal crystals can also delay adhesion of Methicillin resistant staphylococcus aureus (MRSA) while it supports selective adhesion of this bacterium to the confined spaces. / Ph. D.
14

Marine Seaweed Invasions : the Ecology of Introduced <i>Fucus evanescens</i>

Wikström, Sofia A. January 2004 (has links)
<p>Biological invasions are an important issue of global change and an increased understanding of invasion processes is of crucial importance for both conservation managers and international trade. In this thesis, I have studied the invasion of the brown seaweed <i>Fucus evanescens</i>, to investigate the fate and effect of a perennial, habitat-forming seaweed introduced to a coastal ecosystem. A long-term study of the spread of <i>F. evanescens</i> in Öresund (southern Sweden) showed that the species was able to expand its range quickly during the first 20 years after the introduction, but that the expansion has been slow during the subsequent 30 years. Both in Öresund and in Skagerrak, the species is largely restricted to sites where native fucoids are scarce. Laboratory experiments showed that the restricted spread of <i>F. evanescens</i> cannot be explained by the investigated abiotic factors (wave exposure and salinity), although salinity restricts the species from spreading into the Baltic Sea. Neither did I find evidence for that herbivores or epibiota provide biotic resistance to the invader. On the contrary, <i>F. evanescens</i> was less consumed by native herbivores, both compared to the native fucoids and to <i>F. evanescens</i> populations in its native range, and little overgrown by epiphytes. Instead, the restricted spread may be due to competition from native seaweeds, probably by pre-occupation of space, and the establishment has probably been facilitated by disturbance. </p><p>The studies provided little support for a general enemy release in introduced seaweeds. The low herbivore consumption of <i>F. evanescens</i> in Sweden could not be explained by release from specialist herbivores. Instead, high levels of chemical anti-herbivore defence metabolites (phlorotannins) could explain the pattern of herbivore preference for different fucoids. Likewise, the low epibiotic colonisation of <i>F. evanescens </i>plants could be explained by high resistance to epibiotic survival. This shows that colonisation of invading seaweeds by native herbivores and epibionts depends on properties of the invading species. The large differences between fucoid species in their quality as food and habitat for epibionts and herbivores imply that invasions of such habitat-forming species may have a considerable effect on a number of other species in shallow coastal areas. However, since <i>F. evanescens</i> did not exclude other fucoids in its new range, its effect on the recipient biota is probably small.</p>
15

Mitigating fouling of heat exchangers with fluoropolymer coatings

Magens, Ole Mathis January 2019 (has links)
Fouling is a chronic problem in many heat transfer systems and results in the need for frequent heat exchanger (HEX) cleaning. In the dairy industry, the associated operating cost and environmental impact are substantial. Antifouling coatings are one mitigation option. In this work, the fouling behaviour of fluoropolymer, polypropylene and stainless steel heat transfer surfaces in processing raw milk and whey protein solution are studied. Methodologies to assess the economics of antifouling coatings are developed and applied. Two experimental apparatuses were designed and constructed to study fouling at surface temperatures around 90 °C. A microfluidic system with a 650 x 2000 µm flow channel enables fouling studies to be carried out by recirculating 2 l of raw milk. The apparatus operates in the laminar flow regime and the capability to probe the local composition of delicate fouling deposit $\textit{in-situ}$ with histological techniques employing confocal laser scanning microscopy. A larger bench-scale apparatus with a 10 x 42 mm flow channel was built to recirculate 17 l of solution in the turbulent flow regime which is more representative of conditions in an industrial plate HEX. Experimental results demonstrate that fluoropolymer coatings can reduce fouling masses from raw milk and whey protein solution by up to 50 %. Surface properties affect the structure and composition of the deposit. At the interface with apolar surfaces raw milk fouling layers are high in protein, whereas a strongly attached mineral-rich layer is present at the interface with steel. Whey protein deposits generated on apolar surfaces are more spongy and have a lower thermal conductivity and/or density than deposits on steel. The attraction of denatured protein towards apolar surfaces and the formation of a calcium phosphate layer on steel at later stages of fouling are explained with arguments based on the interfacial free energy of these materials in water. The financial attractiveness of coatings is considered for HEX subject to linearly and asymptotically increasing fouling resistance and using a spatially resolved fouling model. An explicit solution to the cleaning-scheduling problem is presented for the case of equal heat capacity flow rates in a counter-current HEX. Scenarios where the use of coatings may be attractive or where there is no financial benefit in cleaning a fouled exchanger are identified. Finally, experimental data are used to estimate the economic potential of fluoropolymer coated HEXs in the ultra-high-temperature treatment of milk. In the considered case, the value of a fluoropolymer coating inferred from the reduction in fouling is estimated to be around 2000 US$/m².
16

Marine Seaweed Invasions : the Ecology of Introduced Fucus evanescens

Wikström, Sofia A. January 2004 (has links)
Biological invasions are an important issue of global change and an increased understanding of invasion processes is of crucial importance for both conservation managers and international trade. In this thesis, I have studied the invasion of the brown seaweed Fucus evanescens, to investigate the fate and effect of a perennial, habitat-forming seaweed introduced to a coastal ecosystem. A long-term study of the spread of F. evanescens in Öresund (southern Sweden) showed that the species was able to expand its range quickly during the first 20 years after the introduction, but that the expansion has been slow during the subsequent 30 years. Both in Öresund and in Skagerrak, the species is largely restricted to sites where native fucoids are scarce. Laboratory experiments showed that the restricted spread of F. evanescens cannot be explained by the investigated abiotic factors (wave exposure and salinity), although salinity restricts the species from spreading into the Baltic Sea. Neither did I find evidence for that herbivores or epibiota provide biotic resistance to the invader. On the contrary, F. evanescens was less consumed by native herbivores, both compared to the native fucoids and to F. evanescens populations in its native range, and little overgrown by epiphytes. Instead, the restricted spread may be due to competition from native seaweeds, probably by pre-occupation of space, and the establishment has probably been facilitated by disturbance. The studies provided little support for a general enemy release in introduced seaweeds. The low herbivore consumption of F. evanescens in Sweden could not be explained by release from specialist herbivores. Instead, high levels of chemical anti-herbivore defence metabolites (phlorotannins) could explain the pattern of herbivore preference for different fucoids. Likewise, the low epibiotic colonisation of F. evanescens plants could be explained by high resistance to epibiotic survival. This shows that colonisation of invading seaweeds by native herbivores and epibionts depends on properties of the invading species. The large differences between fucoid species in their quality as food and habitat for epibionts and herbivores imply that invasions of such habitat-forming species may have a considerable effect on a number of other species in shallow coastal areas. However, since F. evanescens did not exclude other fucoids in its new range, its effect on the recipient biota is probably small.
17

Corrosion-induced release of zinc and copper in marine environments

Sandberg, Jan January 2006 (has links)
<p>This licentiate study was initiated by copper, zinc and galvanized steel producers in Europe, who felt a need to assess runoff rates of copper and zinc from the pure metals and commercial products at marine exposure conditions. Their motive was the increasing concern in various European countries and the on-going risk assessments of copper and zinc within the European commission. Also the circumstance that available runoff rates so far, had been reported for mainly urban exposure conditions, rather than marine. A collaboration was therefore established with the French Corrosion Institute, which runs a marine test site in Brest, and a set of vital questions were formulated. Their answers are the essence of this licentiate study.</p><p>Based on the ISO corrosivity classification and one-year exposures, the marine atmosphere of Brest is fairly corrosive for zinc (class C3) and highly corrosive for copper (C4). Despite higher corrosivity classifications for both metals in Brest compared to the urban site of Stockholm, used as a reference site, nearly all runoff rates assessed for copper, zinc and their commercial products were lower in Brest compared to Stockholm. This was attributed to a higher surface wetting in Brest and concomitant higher removal rate of deposited chloride and sulphate species from the marine-exposed surfaces. The comparison shows that measured corrosion rates cannot be used to predict runoff rates, since different physicochemical processes govern corrosion and runoff respectively.</p><p>For copper, the runoff rate in Brest was approximately 1.1 g m<sup>-2</sup> yr<sup>-1</sup> with cuprite (Cu2O) as main patina constituent. During periods of very high chloride and sulphate deposition, paratacamite (Cu<sub>2</sub>Cl(OH)<sub>3</sub>) formed which increased the runoff rate to 1.5 g m<sup>-2</sup> yr<sup>-1</sup>. For zinc, with hydrozincite (Zn<sub>5</sub>(CO<sub>3</sub>)2(OH)<sub>6</sub>) as the main patina constituent, the runoff rate was relatively stable at 2.6 g m<sup>-2</sup> yr<sup>-1</sup> throughout the year, despite episodes of heavy chloride and sulphate deposition.</p><p>The application of organic coatings of varying thickness on artificially patinated copper or on different zinc-based products resulted in improved barrier properties and reduced runoff rates that seem highly dependent on thickness. The thickest organic coating (150 µm thick), applied on hot dipped galvanized steel, reduced the runoff rate by a factor of 100. No deterioration of organic coatings was observed during the one-year exposures. Alloying zinc-based products with aluminium resulted in surface areas enriched in aluminium and concomitant reduced zinc runoff rates.</p><p>The release rate and bioavailability of copper from different anti-fouling paints into artificial seawater was also investigated. It turned out that the release rate not only depends on the copper concentration in the paint, but also on paint matrix properties and other released metal constituents detected. Far from all copper was bioavailabe at the immediate release situation. In all, the results suggest the importance of assessing the ecotoxic response of anti-fouling paints not only by regarding the copper release, but rather through an integrated effect of all matrix constituents.</p>
18

Cílené biokompatibilní nanočástice pro terapii a diagnostiku rakoviny. / Targeted biocompatible nanoparticles for therapy and cancer diagnostics.

Neburková, Jitka January 2018 (has links)
Nanoparticles (NPs) have considerable potential in targeted medicine. NPs can merge various functions and serve as labels for imaging or as nanocarriers in therapy. Modification of NPs with targeting ligands can lead to highly specific interactions with targeted cancer cells. However, the efficacy of targeting depends on the ratio between specific and non-specific interactions of a NP with the cell. Non-specific interactions of NPs are unrelated to targeted receptors and need to be eliminated in order to decrease background noise during imaging and adverse effect of drugs on healthy tissues. In this thesis, surface modifications of NPs were explored mainly on biocompatible carbon NPs called nanodiamonds (NDs), which have exceptional fluorescent properties such as long fluorescence lifetime, no photobleaching and photoblinking and sensitivity of their fluorescence to electric and magnetic field. Main issues addressed in this thesis are low colloidal stability of NDs in buffers and media, their non-specific interactions with proteins and cells and limited approaches for ND surface modifications. These issues were solved by coating NDs with a layer of biocompatible, hydrophilic, and electroneutral poly(ethylene glycol) or poly[N-(2- hydroxypropyl) methacrylamide] polymers. Optimized polymer coating...
19

Corrosion-induced release of zinc and copper in marine environments

Sandberg, Jan January 2006 (has links)
This licentiate study was initiated by copper, zinc and galvanized steel producers in Europe, who felt a need to assess runoff rates of copper and zinc from the pure metals and commercial products at marine exposure conditions. Their motive was the increasing concern in various European countries and the on-going risk assessments of copper and zinc within the European commission. Also the circumstance that available runoff rates so far, had been reported for mainly urban exposure conditions, rather than marine. A collaboration was therefore established with the French Corrosion Institute, which runs a marine test site in Brest, and a set of vital questions were formulated. Their answers are the essence of this licentiate study. Based on the ISO corrosivity classification and one-year exposures, the marine atmosphere of Brest is fairly corrosive for zinc (class C3) and highly corrosive for copper (C4). Despite higher corrosivity classifications for both metals in Brest compared to the urban site of Stockholm, used as a reference site, nearly all runoff rates assessed for copper, zinc and their commercial products were lower in Brest compared to Stockholm. This was attributed to a higher surface wetting in Brest and concomitant higher removal rate of deposited chloride and sulphate species from the marine-exposed surfaces. The comparison shows that measured corrosion rates cannot be used to predict runoff rates, since different physicochemical processes govern corrosion and runoff respectively. For copper, the runoff rate in Brest was approximately 1.1 g m-2 yr-1 with cuprite (Cu2O) as main patina constituent. During periods of very high chloride and sulphate deposition, paratacamite (Cu2Cl(OH)3) formed which increased the runoff rate to 1.5 g m-2 yr-1. For zinc, with hydrozincite (Zn5(CO3)2(OH)6) as the main patina constituent, the runoff rate was relatively stable at 2.6 g m-2 yr-1 throughout the year, despite episodes of heavy chloride and sulphate deposition. The application of organic coatings of varying thickness on artificially patinated copper or on different zinc-based products resulted in improved barrier properties and reduced runoff rates that seem highly dependent on thickness. The thickest organic coating (150 µm thick), applied on hot dipped galvanized steel, reduced the runoff rate by a factor of 100. No deterioration of organic coatings was observed during the one-year exposures. Alloying zinc-based products with aluminium resulted in surface areas enriched in aluminium and concomitant reduced zinc runoff rates. The release rate and bioavailability of copper from different anti-fouling paints into artificial seawater was also investigated. It turned out that the release rate not only depends on the copper concentration in the paint, but also on paint matrix properties and other released metal constituents detected. Far from all copper was bioavailabe at the immediate release situation. In all, the results suggest the importance of assessing the ecotoxic response of anti-fouling paints not only by regarding the copper release, but rather through an integrated effect of all matrix constituents. / QC 20101126
20

Surface modifications for improving contamination sensitivity in batterypack applications

Morkos, Bishoy, Abdulai, Joel January 2024 (has links)
Various potential methods and techniques for modifying surfaces to make themless sensitive to contamination have been researched for various applicationsbefore, to varying degrees of success. These are discussed in detail to potentiallyapply them in the automotive sector, to face the increasing technical cleanlinessrequirements, that are linked to more complexity in design and electrification. TheTheoretical background in dust adhesion and contact mechanics is discussed, withdevelopments in analytical and numerical methods highlighted. Then, someexamples of the surfaces in question are presented, and their topographiesmeasured. Potential techniques are identified from previous experimental research in otherfields, and their applicability and feasibility are discussed within the limits ofavailable data, then an attempt at a structured approach for choosing candidatesfor further experimental testing on a case by case basis is laid out, and suggestionsfor more comprehensive research into effective parameters and analytical methodsare made.

Page generated in 0.0612 seconds