• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 144
  • 25
  • 17
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 218
  • 218
  • 211
  • 48
  • 43
  • 38
  • 30
  • 23
  • 21
  • 20
  • 19
  • 18
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Phosphate stabilization by non-chromate post-rinse treatment

Yoon, Tae-Ho January 1987 (has links)
Zinc phosphate conversion coating has been applied to improve the corrosion resistance and paint adhesion. However, zinc phosphate crystals dissolve in a highly alkaline environment, which reduces the corrosion resistance of base metal. To improve the phosphate stability in a highly alkaline environment, a post-rinse treatment has been applied to phosphate coating by rinsing with an aqueous solution which contains certain anions or cations. Chromatepost-rinse treatment is the most widely used method and has shown a great improvement in corrosion resistance. But, due to the environmental problems caused by chromate ions, non-chromate post-rinse treatment should be developed, which has equal or better corrosion resistance than does chromate post-rinse treatment. In this research, inorganic silicate with addition of Ca²⁺, Ba²⁺, Ni²⁺, Mg²⁺, has been extensively evaluated together with silane solution, γ -aminopropyltriethoxysilane ( γ -A.P.S., NH₂(CH₂)₃Si(OC₂H₅)₃), which was applied after the post-rinse treatment. The evaluation was carried out by the highly advanced surface analysis techniques such as SEM/EDX, AES, SIMS, and XRD and polarization measurements. / Master of Science
172

Electrochemical Deposition of Nickel Nanocomposites in Acidic Solution for Increased Corrosion Resistance

Daugherty, Ryan E. 08 1900 (has links)
The optimal conditions for deposition of nickel coating and Ni-layered double hydroxide metal matrix composite coatings onto stainless steel discs in a modified all-sulfate solutions have been examined. Nickel films provide good general corrosion resistance and mechanical properties as a protective layer on many metallic substrates. In recent years, there has been interest in incorporation nano-dimensional ceramic materials, such as montemorillonite, into the metal matrices to improve upon the corrosion and mechanical properties. Layered double hydroxides have been used as corrosion enhancer in polymer coatings by increasing mechanical strength and lowering the corrosion rate but until now, have not been incorporated in a metal matrix by any means. Layered double hydroxides can be easily synthesized in a variety of elemental compositions and sizes but typically require the use of non-polar solvents to delaminate into nanodimensional colloidal suspensions. The synthesis of a Zn-Al LDH has been studied and characterized. The effects of the non-polar solvents dimethylformamide and n-butanol on the deposition and corrosion resistance of nickel coatings from a borate electrolyte bath have been studied, a nickel-LDH nanocomposite coating has been synthesized by electrochemical deposition and the corrosion resistance has been studied. Results indicate an improvement in corrosion resistance for the coatings with minimal change in the nickel matrix's internal strain and crystallite size.
173

Modeling of the interaction between electrochemical dissolution and externally applied stress fields

Butler, Bruce M. 01 April 2000 (has links)
No description available.
174

Oxidation and hot corrosion behavior of gas turbine superalloys in steam

Philip, Vinod M. 01 July 2000 (has links)
No description available.
175

Laboratory test methods for the determination of the corrosion of metals in tallol at high temperatures

Markwood, Ira M. January 1942 (has links)
An investigation of the factors affecting the corrosion rates of metals in hot tallol was undertaken to answer questions raised by previous investigators. The items studied were as follows: 1. The change in composition of tallol on heating was determined by heating tallol at 300° C. for 48 hours, and analyzing samples withdrawn at frequent time intervals. 2. The effect of change in composition of tallol was studied by determining the corrosion rate of steel in fresh tallol at 300° C., and in tallol which had been subjected to heating for 48 hours at 300° C. 3. The effect on the corrosive properties of the tallol of removing volatile components, of which a large proportion was water, was studied by determining the corrosion rates of aluminum, steel, nickel and copper at 300° C. when condensable volatile matter was returned to the system, and when it was allowed to escape. 4. The effect of water in the tallol was studied by determining the corrosion rate of steel in tallol at 300° C. for 48 hours, during which time water and other volatile products were allowed to escape, then adding water and repeating the corrosion test for five hours. From the results obtained in this investigation, it was decided that the most satisfactory correlation with plant data would probably be obtained by operating the test with fresh tallol at 300° C and replacing it every eighteen hours, allowing volatile components to escape from the vessel during the test periods. Separate tests must be made on those metals affected by ions of other metals, as shown by Keister(15) and Maguire(19). / M.S.
176

Thermal performance evaluation of artificial protective coatings applied to steam surface condenser tubes

Goodenough, John L. 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: The coating thermal conductivity, the effective coated-tube thermal conductivity and the coating factor of three artificial protective coatings (APCs) applied to condenser tubes are experimentally evaluated. This testing broadens the limited available knowledge of these coatings, which is necessary for effective condenser refurbishment and operation. The coatings are applied to 25.4 mm brass tubes at thicknesses of 44, 46, 50, and 130 μm. Steady state heat transfer tests are performed on these tubes fitted in a double-pipe counter-flow heat exchanger, with heated water in the annulus and coolingwater inside the tube. The experimentally determined thermal conductivities of the coatings range from 0.5 to 2.3 W/m·K. The effective coated-tube conductivity and the coating factor depend on the tube material and size, as well as the coating thickness. A one-dimensional condenser model is used to parametrically investigate the relative overall effect on condenser performance. From these results, coating guidelines for Admiralty brass tubes are proposed in terms of the minimum and maximum coating conductivity and thickness. The effect of the coating on the thermal performance is equivalent to a Heat Exchange Institute (HEI) cleanliness factor of at least 0.85, when adhering to these guidelines. APCs provide a layer of protection against corrosion, erosion and fouling and can preferentially fill tube-wall pits. They can therefore be used to extend the condenser life-span effectively, but, to ensure minimal impact on the overall condenser performance, the coating thickness and conductivity must be carefully controlled and verified experimentally. / AFRIKAANSE OPSOMMING: Die termiese geleidingsvermoë, die effektiewe termiese geleidingsvermoë van bedekte buise en die bedekkingsfaktor van drie kunsmatige beskermingsbedekkingslae wat op kondensorbuise aangewend word, word eksperimenteel geëvalueer. Hierdie evaluering verbreed die beperkte beskikbare kennis oor sodanige bedekkingslae, wat nodig is vir effektiewe kondensor herinrigting en bedryf. Die lae word teen diktes van 44, 46, 50 en 130 μm in 25.4 mm geelkoperbuise aangewend. Warmteoordragstoetse by gestadigde toestande word gedoen op hierdie buise in ’n dubbelpyp-teenvloeiwarmteoordraer, met verhitte water in die annulus en verkoelingswater binne-in die buis. Die eksperimenteel bepaalde termiese geleidingkoëffisiënte wissel tussen 0.5 tot 2.3 W/m·K. Die effektiewe geleidingsvermoë en bedekkingsfaktor hang af van sowel die buis se materiaal en grootte sowel as die dikte van die bedekkings. ’n Eendimensionele kondensormodel word gebruik om die algehele effek van hierdie beskermingsbedekkingslae op kondensorwerkverrigting parametries te ondersoek. Riglyne ten opsigte van aanwending van beskermingslae vir buise van “Admiralty” geelkoper word verskaf in terme van die minimum en maksimum geleidingsvermoë en dikte van bedekkingslae. Met behulp van hierdie riglyne word ’n “Heat Exchange Institue” (HEI) ekwivalente skoonheidsfaktor van minstens 0.85 op ’n nuwe buis behaal. Hierdie kunsmatige bedekkingslaeslae bied beskerming teen korrosie, erosie en bevuiling en kan klein kuile in die buiswand vul. Hulle kan dus gebruik word om die lewensduur van die kondensator te verleng, maar hul dikte en geleidingsvermoë moet noukeurig beheer word en moet eksperimenteel geverifieer word.
177

Electrodeposition of Copper on Ruthenium Oxides and Bimetallic Corrosion of Copper/Ruthenium in Polyphenolic Antioxidants

Venkataraman, Shyam S. 08 1900 (has links)
Copper (Cu) electrodeposition on ruthenium (Ru) oxides was studied due to important implications in semiconductor industry. Ruthenium, proposed as the copper diffusion barrier/liner material, has higher oxygen affinity to form different oxides. Three different oxides (the native oxide, reversible oxide, and irreversible oxide) were studied. Native oxide can be formed on exposing Ru in atmosphere. The reversible and irreversible oxides can be formed by applying electrochemical potential. Investigation of Cu under potential deposition on these oxides indicates the similarity between native and reversible oxides by its nature of inhibiting Cu deposition. Irreversible oxide formed on Ru surface is rather conductive and interfacial binding between Cu and Ru is greatly enhanced. After deposition, bimetallic corrosion of Cu/Ru in different polyphenols was studied. Polyphenols are widely used as antioxidants in post chemical mechanical planarization (CMP). For this purpose, different trihydroxyl substituted benzenes were used as antioxidants. Ru, with its noble nature enhances bimetallic corrosion of Cu. Gallic acid (3,4,5 - trihydroxybenzoic acid) was chosen as model compound. A mechanism has been proposed and validity of the mechanism was checked with other antioxidants. Results show that understanding the chemical structure of antioxidants is necessary during its course of reaction with Cu.
178

Evaluation of Chloride Threshold for Steel Fiber Reinforced Concrete Composited in Aggressively Corrosive Environments

Unknown Date (has links)
Highway drainage pipes utilize concrete reinforced with steel wire to help mitigate water, earth, and traffic loads. Drainage pipes reinforced with zinc electroplated steel fibers offer a lower steel alternative to traditional steel wire cage reinforcements. The objective of the thesis research was to determine the physical and electrochemical characteristics of zinc electroplated steel fiber corrosion propagation. Experimental programs include: Fracture analysis of zinc electroplated steel fibers embedded in dry-cast concrete pipes exposed to varying chloride concentrations; Visual analysis of zinc electroplated steel fibers embedded in concrete exposed to varying chloride concentrations; Electrochemical analysis of zinc electroplated steel fibers embedded in concrete exposed to varying chlorides; Chloride threshold determination for zinc electroplated steel fibers immersed in simulated pore solution. Between the four experimental programs the most significant conclusion is that oxygen, moisture, and chlorides past the chloride threshold must be present for corrosion to propagate significantly on the zinc electroplated steel fibers. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2016. / FAU Electronic Theses and Dissertations Collection
179

Le contrôle de réactivité d'aluminium en peinture anti-corrosion résistant à la haute température

Serdechnova, Maria 20 July 2012 (has links) (PDF)
L'objectif de ce travail est de comprendre le mécanisme fondamentales de la réactivité de l'Al et d'utiliser ces connaissances pour développer une peinture sacrificielle sans Cr(VI). L'Al pur, ses alliages et ses intermétalliques sont étudiés. La spectroélectrochimie atomique à émission de plasma est utilisée pour isoler les phénomènes individuels au cours de la dégradation. La relation linéaire entre le courent cathodique et la vitesse de dissolution de l'Al est démontrée et interprétée par un modèle dans lequel la génération d'OH-, la formation/dissolution d'Al(OH)3 et la diffusion d'Al(OH)4- sont cinétiquement couplées. La dissolution significative du liant de première formulation a été accompagnée de la passivation d'Al pendant la polarisation cathodique. Un comportement similaire est observé pour des intermétalliques Al-Mg. Ceci est interprété comme la réaction des composants (du Mg ou du Si) avec OH-. Ces résultats confirment le modèle de réactivité cathodique de l'Al. La perte d'activité anodique est expliquée par la perte de contact électrique au niveau des interfaces métal/oxyde/polymère/substrat. Les modes de transformation de la couche d'oxyde sont étudiées. Les ions de Mg2+ retardent la passivation d'Al par la formation de spinelle semi-conducteur qui est responsable de l'amélioration de la conductivité.Finalement, deux facteurs principaux sont jugés essentiels pour la réactivité de l'Al: le pH de la solution et la conductivité de l'oxyde. En utilisant des additifs pour contrôler ces facteurs, on a proposé la formulation d'une nouvelle peinture, stable jusqu'à 550°C et sacrificielle plus de 1000 H au test de brouillard salin.
180

Recovery boiler superheater corrosion - solubility of metal oxides in molten salt

Meyer, Joseph Freeman 15 April 2013 (has links)
The recovery boiler in a pulp and paper mill plays a dual role of recovering pulping chemicals and generating steam for either chemical processes or producing electricity. The efficiency of producing steam in the recovery boiler is limited by the first melting temperature of ash deposits that accumulate on the superheater tubes. Above the first melting temperature, the molten salt reacts with the protective oxide film that develops and dissolves it. The most protective oxide is determined by evaluating how little it dissolves and how its solubility changes in the molten salt. Solubility tests were done on several protective oxides in a known salt composition from a recovery boiler that burns hardwood derived fuel. ICP-OES was used to measure concentration of dissolved metal in the exposure tests while EDS and XRD were used to verify chemical compositions in exposure tests. NiO was found to be the least soluble oxide while Cr₂O₃ and Al₂O₃ had similar solubility with Fe₂O₃ being less soluble than Cr₂O₃ but more soluble than NiO. Exposure tests with pure metals and selected alloys indicated that even though Fe₂O₃ has little solubility, it is not a protective oxide and causes severe corrosion in stainless steels. The change in performance of iron based alloys was due to the development of a negative solubility gradient for Fe₂O₃ where Fe₂O₃ precipitated out of solution and created a continuous leaching of oxide. Manganese was found to be beneficial in stainless steels but its role is still unknown. Nickel based alloys were found to be least corroded due to nickel's low solubility and because it did not form a negative solubility gradient.

Page generated in 0.0443 seconds