• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • Tagged with
  • 14
  • 14
  • 14
  • 12
  • 12
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automatic detection of screams and shouts in the metro / Détection automatique de cris dans le métro

Laffitte, Pierre 13 December 2017 (has links)
Ce travail s’appuie sur les principes de la reconnaissance de motifs sonores et de la modélisation statistique pour proposer un système capable de reconnaître et détecter automatiquement des cris de personnes à l’intérieur d’un métro. Utilisant des enregistrements provenant de reconstitutions de scènes d’agressions dans une rame de métro Parisien en fonctionnement, nous avons estimé des modèles statistiques issus de trois architectures de réseaux de neurones différentes (DNN, CNN et RNN/LSTM). Ces modèles ont été appris sur 3 catégories de sons à reconnaître dans un premier temps (cris, parole, et bruit environnant), puis sur des catégories introduisant des informations spécifiques au déplacement de la rame de métro (afin d’apporter une information contextuelle supplémentaire), considérant soit les événements sonores isolés soit le flux audio continu. Les résultats obtenus montrent que le modèle le plus efficace est le modèle RNN/LSTM qui permet de mieux prendre en compte la structure temporelle des événements sonores. La reconnaissance des trois catégories cris, parole et bruit de fond est probante, indépendamment du reste de l’environnement sonore, mais l’ajout d’information contextuelle permet d’améliorer les taux de reconnaissance. Nous concluons que le manque de données est un facteur limitant, qui pourrait être atténué en utilisant l’apprentissage par transfert, consistant à utiliser des réseaux plus complexes pré-appris sur des données différentes, ou des techniques d’augmentation, consistant à accroitre la taille de la base de données en créant des données artificielles à partir de celles existantes. / This study proposes a security/surveillance system capable of automatically recognizing and detecting screams and shouts in a metro, based on the theory of classification through statistical modeling. Using a database recorded from enactments of violent scenes inside a Paris metro running its course, we estimated statistical models from three different neural network architectures (DNN, CNN and RNN/LSTM). The models were first trained to recognize three categories of sounds (shouts, speech and background noise), then introducing more categories to describe the surrounding environment (in order to bring some contextual information), considering the data as isolated sound events or as a continuous audio stream. The results obtained speak to the higher modeling power of the temporal model which takes into account the temporal structure of sound events. The scores for the Classification of the three categories shout, speech and background turned out to be quite satisfying, regardless of the rest of the acoustic environment, and adding contextual information proved useful. During this study we observed that the lack of data is a major limiting factor, which could be circumvented by using transfer learning, which consists in using more complex networks pre-trained with different data, as well as data augmentation techniques, consisting in increasing the amount of data by creating synthetic data from existing ones.
2

Reinforcement learning for dialogue systems optimization with user adaptation / Apprentissage par renforcement pour l’optimisation des systèmes de dialogue via l’adaptation à l’utilisateur

Carrara, Nicolas 18 December 2019 (has links)
Les systèmes d’intelligence artificielle les plus puissants utilisent désormais des modèles statistiques. Afin de construire des modèles efficaces, ces systèmes doivent collecter une quantité substantielle de données issues de l’environnement. Les assistants personnels, maisons connectées, serveurs vocaux et autres systèmes de dialogue ne font pas exception. Ces systèmes ont pour vocation d’interagir avec des humains, et pour cela, leurs données d’apprentissage se doivent d’être collectées avec ces mêmes humains. Parce que le nombre d’interactions avec une seule personne est assez faible, l’approche usuelle pour augmenter le jeu de données consiste à agréger les données de tous les utilisateurs.Une des limitations de cette approche vient du fait que, par construction, les modèles entraînés ainsi ne sont efficaces qu’avec un humain "moyen" et n’incluent pas de système d’adaptation ; cette faiblesse entraîne la restriction du service à certains groupes de personnes; Par conséquent, cela réduit l’ensemble des utilisateurs et provoque des problèmes d’inclusion. La présente thèse propose des solutions impliquant la construction de systèmes de dialogue combinant l’apprentissage par transfert et l’apprentissage parrenforcement. La thèse explore deux pistes de recherche : La première consiste à inclure un mécanisme d’adaptation dès les premières interactions avec un nouvel utilisateur. Pour ce faire, nous utilisons la connaissance accumulée avec des utilisateurs déjà connus du système. La question sous-jacente est la suivante : comment gérer l’évolution du système suite à une croissance interrompue d’utilisateurs et donc de connaissance? La première approche implique le clustering des systèmes de dialogue (chacun étant spécialisé pour un utilisateur) en fonction de leurs stratégies. Nous démontrons que la méthode améliore la qualité des dialogues en interagissant avec des modèles à base de règles et des modèles d’humains. La seconde approche propose d’inclure un mécanisme d’apprentissage par transfert dans l’exécution d’un algorithme d’apprentissage profond par renforcement, Deep Q-learning. La seconde piste avance l’idée selon laquelle les premières interactions avec un nouvel utilisateur devraient être gérées par un système de dialogue sécurisé et précautionneux avant d’utiliser un système de dialogue spécialisé. L’approche se divise en deux étapes. La première étape consiste à apprendre une stratégie sécurisée avec de l’apprentissage par renforcement. À cet effet, nous proposons un nouveau framework d’apprentissage par renforcement sous contrainte en états continus ainsi que des algorithmes les solutionnant. En particulier, nous validons, en termes de sécurité et d’efficacité, une extension de Fitted-Q pour les deux applications sous contraintes : les systèmes de dialogue et la conduite autonome. La deuxième étape implique l’utilisation de ces stratégies sécurisées lors des premières interactions avec un nouvel utilisateur ; cette méthode est une extension de l’algorithme classique d’exploration, ε-greedy. / The most powerful artificial intelligence systems are now based on learned statistical models. In order to build efficient models, these systems must collect a huge amount of data on their environment. Personal assistants, smart-homes, voice-servers and other dialogue applications are no exceptions to this statement. A specificity of those systems is that they are designed to interact with humans, and as a consequence, their training data has to be collected from interactions with these humans. As the number of interactions with a single person is often too scarce to train a proper model, the usual approach to maximise the amount of data consists in mixing data collected with different users into a single corpus. However, one limitation of this approach is that, by construction, the trained models are only efficient with an "average" human and do not include any sort of adaptation; this lack of adaptation makes the service unusable for some specific group of persons and leads to a restricted customers base and inclusiveness problems. This thesis proposes solutions to construct Dialogue Systems that are robust to this problem by combining Transfer Learning and Reinforcement Learning. It explores two main ideas: The first idea of this thesis consists in incorporating adaptation in the very first dialogues with a new user. To that extend, we use the knowledge gathered with previous users. But how to scale such systems with a growing database of user interactions? The first proposed approach involves clustering of Dialogue Systems (tailored for their respective user) based on their behaviours. We demonstrated through handcrafted and real user-models experiments how this method improves the dialogue quality for new and unknown users. The second approach extends the Deep Q-learning algorithm with a continuous transfer process.The second idea states that before using a dedicated Dialogue System, the first interactions with a user should be handled carefully by a safe Dialogue System common to all users. The underlying approach is divided in two steps. The first step consists in learning a safe strategy through Reinforcement Learning. To that extent, we introduced a budgeted Reinforcement Learning framework for continuous state space and the underlying extensions of classic Reinforcement Learning algorithms. In particular, the safe version of the Fitted-Q algorithm has been validated, in term of safety and efficiency, on a dialogue system tasks and an autonomous driving problem. The second step consists in using those safe strategies when facing new users; this method is an extension of the classic ε-greedy algorithm.
3

Nonnegative matrix factorization for transfer learning / Factorisation matricielle non-négative pour l'apprentissage par transfert

Redko, Ievgen 26 November 2015 (has links)
L’apprentissage par transfert consiste `a utiliser un jeu de taches pour influencerl’apprentissage et améliorer les performances sur une autre tache.Cependant, ce paradigme d’apprentissage peut en réalité gêner les performancessi les taches (sources et cibles) sont trop dissemblables. Un défipour l’apprentissage par transfert est donc de développer des approchesqui détectent et évitent le transfert négatif des connaissances utilisant tr`espeu d’informations sur la tache cible. Un cas particulier de ce type d’apprentissageest l’adaptation de domaine. C’est une situation o`u les tachessources et cibles sont identiques mais dans des domaines différents. Danscette thèse, nous proposons des approches adaptatives basées sur la factorisationmatricielle non-figurative permettant ainsi de trouver une représentationadéquate des données pour ce type d’apprentissage. En effet, unereprésentation utile rend généralement la structure latente dans les donnéesexplicite, et réduit souvent la dimensionnalité´e des données afin que d’autresméthodes de calcul puissent être appliquées. Nos contributions dans cettethèse s’articulent autour de deux dimensions complémentaires : théoriqueet pratique.Tout d’abord, nous avons propose deux méthodes différentes pour résoudrele problème de l’apprentissage par transfert non supervise´e bas´e sur destechniques de factorisation matricielle non-négative. La première méthodeutilise une procédure d’optimisation itérative qui vise `a aligner les matricesde noyaux calculées sur les bases des données provenant de deux taches.La seconde représente une approche linéaire qui tente de découvrir unplongement pour les deux taches minimisant la distance entre les distributionsde probabilité correspondantes, tout en préservant la propriété depositivité.Nous avons également propos´e un cadre théorique bas´e sur les plongementsHilbert-Schmidt. Cela nous permet d’améliorer les résultats théoriquesde l’adaptation au domaine, en introduisant une mesure de distancenaturelle et intuitive avec de fortes garanties de calcul pour son estimation.Les résultats propos´es combinent l’etancheite des bornes de la théoried’apprentissage de Rademacher tout en assurant l’estimation efficace deses facteurs cl´es.Les contributions théoriques et algorithmiques proposées ont et évaluéessur un ensemble de données de référence dans le domaine avec des résultatsprometteurs. / The ability of a human being to extrapolate previously gained knowledge to other domains inspired a new family of methods in machine learning called transfer learning. Transfer learning is often based on the assumption that objects in both target and source domains share some common feature and/or data space. If this assumption is false, most of transfer learning algorithms are likely to fail. In this thesis we propose to investigate the problem of transfer learning from both theoretical and applicational points of view.First, we present two different methods to solve the problem of unsuper-vised transfer learning based on Non-negative matrix factorization tech-niques. First one proceeds using an iterative optimization procedure that aims at aligning the kernel matrices calculated based on the data from two tasks. Second one represents a linear approach that aims at discovering an embedding for two tasks that decreases the distance between the cor-responding probability distributions while preserving the non-negativity property.We also introduce a theoretical framework based on the Hilbert-Schmidt embeddings that allows us to improve the current state-of-the-art theo-retical results on transfer learning by introducing a natural and intuitive distance measure with strong computational guarantees for its estimation. The proposed results combine the tightness of data-dependent bounds de-rived from Rademacher learning theory while ensuring the efficient esti-mation of its key factors.Both theoretical contributions and the proposed methods were evaluated on a benchmark computer vision data set with promising results. Finally, we believe that the research direction chosen in this thesis may have fruit-ful implications in the nearest future.
4

Learning from electrophysiology time series during sleep : from scoring to event detection / Apprentissage à partir de séries temporelles d'électrophysiologie pendant le sommeil : de l'annotation manuelle à la détection automatique d'évènements

Chambon, Stanislas 14 December 2018 (has links)
Le sommeil est un phénomène biologique universel complexe et encore peu compris. La méthode de référence actuelle pour caractériser les états de vigilance au cours du sommeil est la polysomnographie (PSG) qui enregistre de manière non invasive à la surface de la peau, les modifications électrophysiologiques de l’activité cérébrale (électroencéphalographie, EEG), oculaire (électro-oculographie, EOG) et musculaire (électromyographie, EMG). Traditionnellement, les signaux électrophysiologiques sont ensuite analysés par un expert du sommeil qui annote manuellement les évènements d’intérêt comme les stades de sommeil ou certains micro-évènements (grapho éléments EEG). Toutefois, l’annotation manuelle est chronophage et sujette à la subjectivité de l’expert. De plus, le développement exponentiel d’outils de monitoring du sommeil enregistrant et analysant automatiquement les signaux électrophysiologiques tels que le bandeau Dreem rend nécessaire une automatisation de ces tâches.L’apprentissage machine bénéficie d’une attention croissante car il permet d’apprendre à un ordinateur à réaliser certaines tâches de décision à partir d’un ensemble d’exemples d’apprentissage et d’obtenir des performances de prédictions plus élevées qu’avec les méthodes classiques. Les avancées techniques dans le domaine de l’apprentissage profond ont ouvert de nouvelles perspectives pour la science du sommeil tout en soulevant de nouveaux défis techniques. L’entraînement des algorithmes d’apprentissage profond nécessite une grande quantité de données annotées qui n’est pas nécessairement disponible pour les données PSG. De plus, les algorithmes d’apprentissage sont très sensibles à la variabilité des données qui est non négligeable en ce qui concerne ces données. Cela s’explique par la variabilité intra et inter-sujet (pathologies / sujets sains, âge…).Cette thèse étudie le développement d’algorithmes d’apprentissage profond afin de réaliser deux types de tâches: la prédiction des stades de sommeil et la détection de micro-événements. Une attention particulière est portée (a) sur la quantité de données annotées requise pour l’entraînement des algorithmes proposés et (b) sur la sensibilité de ces algorithmes à la variabilité des données. Des stratégies spécifiques, basées sur l’apprentissage par transfert, sont proposées pour résoudre les problèmes techniques dus au manque de données annotées et à la variabilité des données. / Sleep is a complex and not fully understood biological phenomenon. The traditional process to monitor sleep relies on the polysomnography exam (PSG). It records, in a non invasive fashion at the level of the skin, electrophysiological modifications of the brain activity (electroencephalography, EEG), ocular (electro-oculography, EOG) and muscular (electro-myography, EMG). The recorded signals are then analyzed by a sleep expert who manually annotates the events of interest such as the sleep stages or some micro-events. However, manual labeling is time-consuming and prone to the expert subjectivity. Furthermore, the development of sleep monitoring consumer wearable devices which record and process automatically electrophysiological signals, such as Dreem headband, requires to automate some labeling tasks.Machine learning (ML) has received much attention as a way to teach a computer to perform some decision tasks automatically from a set of learning examples. Furthermore, the rise of deep learning (DL) algorithms in several fields have opened new perspectives for sleep sciences. On the other hand, this is also raising new concerns related to the scarcity of labeled data that may prevent their training processes and the variability of data that may hurt their performances. Indeed, sleep data is scarce due to the labeling burden and exhibits also some intra and inter-subject variability (due to sleep disorders, aging...).This thesis has investigated and proposed ML algorithms to automate the detection of sleep related events from raw PSG time series. Through the prism of DL, it addressed two main tasks: sleep stage classification and micro-event detection. A particular attention was brought (a) to the quantity of labeled data required to train such algorithms and (b) to the generalization performances of these algorithms to new (variable) data. Specific strategies, based on transfer learning, were designed to cope with the issues related to the scarcity of labeled data and the variability of data.
5

Nouvelles approches itératives avec garanties théoriques pour l'adaptation de domaine non supervisée / New iterative approaches with theoretical guarantees for unsupervised domain adaptation

Peyrache, Jean-Philippe 11 July 2014 (has links)
Ces dernières années, l’intérêt pour l’apprentissage automatique n’a cessé d’augmenter dans des domaines aussi variés que la reconnaissance d’images ou l’analyse de données médicales. Cependant, une limitation du cadre classique PAC a récemment été mise en avant. Elle a entraîné l’émergence d’un nouvel axe de recherche : l’Adaptation de Domaine, dans lequel on considère que les données d’apprentissage proviennent d’une distribution (dite source) différente de celle (dite cible) dont sont issues les données de test. Les premiers travaux théoriques effectués ont débouché sur la conclusion selon laquelle une bonne performance sur le test peut s’obtenir en minimisant à la fois l’erreur sur le domaine source et un terme de divergence entre les deux distributions. Trois grandes catégories d’approches s’en inspirent : par repondération, par reprojection et par auto-étiquetage. Dans ce travail de thèse, nous proposons deux contributions. La première est une approche de reprojection basée sur la théorie du boosting et s’appliquant aux données numériques. Celle-ci offre des garanties théoriques intéressantes et semble également en mesure d’obtenir de bonnes performances en généralisation. Notre seconde contribution consiste d’une part en la proposition d’un cadre permettant de combler le manque de résultats théoriques pour les méthodes d’auto-étiquetage en donnant des conditions nécessaires à la réussite de ce type d’algorithme. D’autre part, nous proposons dans ce cadre une nouvelle approche utilisant la théorie des (epsilon, gamma, tau)-bonnes fonctions de similarité afin de contourner les limitations imposées par la théorie des noyaux dans le contexte des données structurées / During the past few years, an increasing interest for Machine Learning has been encountered, in various domains like image recognition or medical data analysis. However, a limitation of the classical PAC framework has recently been highlighted. It led to the emergence of a new research axis: Domain Adaptation (DA), in which learning data are considered as coming from a distribution (the source one) different from the one (the target one) from which are generated test data. The first theoretical works concluded that a good performance on the target domain can be obtained by minimizing in the same time the source error and a divergence term between the two distributions. Three main categories of approaches are derived from this idea : by reweighting, by reprojection and by self-labeling. In this thesis work, we propose two contributions. The first one is a reprojection approach based on boosting theory and designed for numerical data. It offers interesting theoretical guarantees and also seems able to obtain good generalization performances. Our second contribution consists first in a framework filling the gap of the lack of theoretical results for self-labeling methods by introducing necessary conditions ensuring the good behavior of this kind of algorithm. On the other hand, we propose in this framework a new approach, using the theory of (epsilon, gamma, tau)- good similarity functions to go around the limitations due to the use of kernel theory in the specific context of structured data
6

Optimisation d'hyper-paramètres en apprentissage profond et apprentissage par transfert : applications en imagerie médicale / Hyper-parameter optimization in deep learning and transfer learning : applications to medical imaging

Bertrand, Hadrien 15 January 2019 (has links)
Ces dernières années, l'apprentissage profond a complètement changé le domaine de vision par ordinateur. Plus rapide, donnant de meilleurs résultats, et nécessitant une expertise moindre pour être utilisé que les méthodes classiques de vision par ordinateur, l'apprentissage profond est devenu omniprésent dans tous les problèmes d'imagerie, y compris l'imagerie médicale.Au début de cette thèse, la construction de réseaux de neurones adaptés à des tâches spécifiques ne bénéficiait pas encore de suffisamment d'outils ni d'une compréhension approfondie. Afin de trouver automatiquement des réseaux de neurones adaptés à des tâches spécifiques, nous avons ainsi apporté des contributions à l’optimisation d’hyper-paramètres de réseaux de neurones. Cette thèse propose une comparaison de certaines méthodes d'optimisation, une amélioration en performance d'une de ces méthodes, l'optimisation bayésienne, et une nouvelle méthode d'optimisation d'hyper-paramètres basé sur la combinaison de deux méthodes existantes : l'optimisation bayésienne et hyperband.Une fois équipés de ces outils, nous les avons utilisés pour des problèmes d'imagerie médicale : la classification de champs de vue en IRM, et la segmentation du rein en échographie 3D pour deux groupes de patients. Cette dernière tâche a nécessité le développement d'une nouvelle méthode d'apprentissage par transfert reposant sur la modification du réseau de neurones source par l'ajout de nouvelles couches de transformations géométrique et d'intensité.En dernière partie, cette thèse revient vers les méthodes classiques de vision par ordinateur, et nous proposons un nouvel algorithme de segmentation qui combine les méthodes de déformations de modèles et l'apprentissage profond. Nous montrons comment utiliser un réseau de neurones pour prédire des transformations globales et locales sans accès aux vérités-terrains de ces transformations. Cette méthode est validé sur la tâche de la segmentation du rein en échographie 3D. / In the last few years, deep learning has changed irrevocably the field of computer vision. Faster, giving better results, and requiring a lower degree of expertise to use than traditional computer vision methods, deep learning has become ubiquitous in every imaging application. This includes medical imaging applications. At the beginning of this thesis, there was still a strong lack of tools and understanding of how to build efficient neural networks for specific tasks. Thus this thesis first focused on the topic of hyper-parameter optimization for deep neural networks, i.e. methods for automatically finding efficient neural networks on specific tasks. The thesis includes a comparison of different methods, a performance improvement of one of these methods, Bayesian optimization, and the proposal of a new method of hyper-parameter optimization by combining two existing methods: Bayesian optimization and Hyperband.From there, we used these methods for medical imaging applications such as the classification of field-of-view in MRI, and the segmentation of the kidney in 3D ultrasound images across two populations of patients. This last task required the development of a new transfer learning method based on the modification of the source network by adding new geometric and intensity transformation layers.Finally this thesis loops back to older computer vision methods, and we propose a new segmentation algorithm combining template deformation and deep learning. We show how to use a neural network to predict global and local transformations without requiring the ground-truth of these transformations. The method is validated on the task of kidney segmentation in 3D US images.
7

Regularization schemes for transfer learning with convolutional networks / Stratégies de régularisation pour l'apprentissage par transfert des réseaux de neurones à convolution

Li, Xuhong 10 September 2019 (has links)
L’apprentissage par transfert de réseaux profonds réduit considérablement les coûts en temps de calcul et en données du processus d’entraînement des réseaux et améliore largement les performances de la tâche cible par rapport à l’apprentissage à partir de zéro. Cependant, l’apprentissage par transfert d’un réseau profond peut provoquer un oubli des connaissances acquises lors de l’apprentissage de la tâche source. Puisque l’efficacité de l’apprentissage par transfert vient des connaissances acquises sur la tâche source, ces connaissances doivent être préservées pendant le transfert. Cette thèse résout ce problème d’oubli en proposant deux schémas de régularisation préservant les connaissances pendant l’apprentissage par transfert. Nous examinons d’abord plusieurs formes de régularisation des paramètres qui favorisent toutes explicitement la similarité de la solution finale avec le modèle initial, par exemple, L1, L2, et Group-Lasso. Nous proposons également les variantes qui utilisent l’information de Fisher comme métrique pour mesurer l’importance des paramètres. Nous validons ces approches de régularisation des paramètres sur différentes tâches de segmentation sémantique d’image ou de calcul de flot optique. Le second schéma de régularisation est basé sur la théorie du transport optimal qui permet d’estimer la dissimilarité entre deux distributions. Nous nous appuyons sur la théorie du transport optimal pour pénaliser les déviations des représentations de haut niveau entre la tâche source et la tâche cible, avec le même objectif de préserver les connaissances pendant l’apprentissage par transfert. Au prix d’une légère augmentation du temps de calcul pendant l’apprentissage, cette nouvelle approche de régularisation améliore les performances des tâches cibles et offre une plus grande précision dans les tâches de classification d’images par rapport aux approches de régularisation des paramètres. / Transfer learning with deep convolutional neural networks significantly reduces the computation and data overhead of the training process and boosts the performance on the target task, compared to training from scratch. However, transfer learning with a deep network may cause the model to forget the knowledge acquired when learning the source task, leading to the so-called catastrophic forgetting. Since the efficiency of transfer learning derives from the knowledge acquired on the source task, this knowledge should be preserved during transfer. This thesis solves this problem of forgetting by proposing two regularization schemes that preserve the knowledge during transfer. First we investigate several forms of parameter regularization, all of which explicitly promote the similarity of the final solution with the initial model, based on the L1, L2, and Group-Lasso penalties. We also propose the variants that use Fisher information as a metric for measuring the importance of parameters. We validate these parameter regularization approaches on various tasks. The second regularization scheme is based on the theory of optimal transport, which enables to estimate the dissimilarity between two distributions. We benefit from optimal transport to penalize the deviations of high-level representations between the source and target task, with the same objective of preserving knowledge during transfer learning. With a mild increase in computation time during training, this novel regularization approach improves the performance of the target tasks, and yields higher accuracy on image classification tasks compared to parameter regularization approaches.
8

Tools O' the Times : understanding the common proporties of species interaction networks across space

Strydom, Tanya 11 1900 (has links)
Le domaine de l’écologie des réseaux est encore limité dans sa capacité à faire des inférences mondiales à grande échelle. Ce défi est principalement dû à la difficulté d’échantillonnage des interactions sur le terrain, entraînant de nombreuses « lacunes » en ce qui concerne la couverture mondiale des données. Cette thèse adopte une approche « centrée sur les méthodes » de l’écologie des réseaux et se concentre sur l’idée de développer des outils pour aider à combler les lacunes en matière de données en présentant la prédiction comme une alternative accessible à l’échantillonnage sur le terrain et introduit deux « outils » différents qui sont prêts à poser des questions à l’échelle mondiale. Le chapitre 1 présente les outils que nous pouvons utiliser pour faire des prédictions de réseaux et est motivé par l’idée selon laquelle avoir la capacité de prédire les interactions entre les espèces grâce à l’utilisation d’outils de modélisation est impératif pour une compréhension plus globale des réseaux écologiques. Ce chapitre comprend une preuve de concept (dans laquelle nous montrons comment un simple modèle de réseau neuronal est capable de faire des prédictions précises sur les interactions entre espèces), une évaluation des défis et des opportunités associés à l’amélioration des prédictions d’interaction et une feuille de route conceptuelle concernant l’utilisation de modèles prédictifs pour les réseaux écologiques. Les chapitres 2 et 3 sont étroitement liés et se concentrent sur l’utilisation de l’intégration de graphiques pour la prédiction de réseau. Essentiellement, l’intégration de graphes nous permet de transformer un graphe (réseau) en un ensemble de vecteurs, qui capturent une propriété écologique du réseau et nous fournissent une abstraction simple mais puissante d’un réseau d’interaction et servent de moyen de maximiser les informations disponibles. dispo- nibles à partir des réseaux d’interactions d’espèces. Parce que l’intégration de graphes nous permet de « décoder » les informations au sein d’un réseau, elle est conçue comme un outil de prédiction de réseau, en particulier lorsqu’elle est utilisée dans un cadre d’apprentissage par transfert. Elle s’appuie sur l’idée que nous pouvons utiliser les connaissances acquises en résolvant un problème connu. et l’utiliser pour résoudre un problème étroitement lié. Ici, nous avons utilisé le métaweb européen (connu) pour prédire un métaweb pour les espèces canadiennes en fonction de leur parenté phylogénétique. Ce qui rend ce travail particulière- ment passionnant est que malgré le faible nombre d’espèces partagées entre ces deux régions, nous sommes capables de récupérer la plupart (91%) des interactions. Le chapitre 4 approfondit la réflexion sur la complexité des réseaux et les différentes ma- nières que nous pourrions choisir de définir la complexité. Plus spécifiquement, nous remet- tons en question les mesures structurelles plus traditionnelles de la complexité en présentant l’entropie SVD comme une mesure alternative de la complexité. Adopter une approche phy- sique pour définir la complexité nous permet de réfléchir aux informations contenues dans un réseau plutôt qu’à leurs propriétés émergentes. Il est intéressant de noter que l’entropie SVD révèle que les réseaux bipartites sont très complexes et ne sont pas nécessairement conformes à l’idée selon laquelle la complexité engendre la stabilité. Enfin, je présente le package Julia SpatialBoundaries.jl. Ce package permet à l’utili- sateur d’implémenter l’algorithme de wombling spatial pour des données disposées de manière uniforme ou aléatoire dans l’espace. Étant donné que l’algorithme de wombling spatial se concentre à la fois sur le gradient et sur la direction du changement pour un paysage donné, il peut être utilisé à la fois pour détecter les limites au sens traditionnel du terme ainsi que pour examiner de manière plus nuancée la direction des changements. Cette approche pourrait être un moyen bénéfique de réfléchir aux questions liées à la détection des limites des réseaux et à leur relation avec les limites environnementales. / The field of network ecology is still limited in its ability to make large-scale, global inferences. This challenge is primarily driven by the difficulty of sampling interactions in the field, leading to many ‘gaps’ with regards to global coverage of data. This thesis takes a ’methods-centric’ approach to network ecology and focuses on the idea of developing tools to help with filling in the the data gaps by presenting prediction as an accessible alternative to sampling in the field and introduces two different ’tools’ that are primed for asking questions at global scales. Chapter 1 maps out tools we can use to make network predictions and is driven by the idea that having the ability to predict interactions between species through the use of modelling tools is imperative for a more global understanding of ecological networks. This chapter includes a proof-of-concept (where we show how a simple neural network model is able to make accurate predictions about species interactions), an assessment of the challenges and opportunities associated with improving interaction predictions, and providing a conceptual roadmap concerned with the use of predictive models for ecological networks. Chapters 2 and 3 are closely intertwined and are focused on the use of graph embedding for network prediction. Essentially graph embedding allows us to transform a graph (net- work) into a set of vectors, which capture an ecological property of the network and provides us with a simple, yet powerful abstraction of an interaction network and serves as a way to maximise the available information available from species interaction networks. Because graph embedding allows us to ’decode’ the information within a network it is primed as a tool for network prediction, specifically when used in a transfer learning framework, this builds on the idea that we can take the knowledge gained from solving a known problem and using it to solve a closely related problem. Here we used the (known) European metaweb to predict a metaweb for Canadian species based on their phylogenetic relatedness. What makes this work particularly exciting is that despite the low number of species shared between these two regions we are able to recover most (91%) of interactions. Chapter 4 delves into thinking about the complexity of networks and the different ways we might choose to define complexity. More specifically we challenge the more traditional structural measures of complexity by presenting SVD entropy as an alternative measure of complexity. Taking a physical approach to defining complexity allows us to think about the information contained within a network as opposed to their emerging properties. Interest- ingly, SVD entropy reveals that bipartite networks are highly complex and do not necessarily conform to the idea that complexity begets stability. Finally, I present the Julia package SpatialBoundaries.jl. This package allows the user to implement the spatial wombling algorithm for data arranged uniformly or randomly across space. Because the spatial wombling algorithm focuses on both the gradient as well as the direction of change for the given landscape it can be used both for detecting boundaries in the traditional sense as well as a more nuanced look at at the direction of changes. This approach could be a beneficial way with which to think about questions which relate to boundary detection for networks and how these relate to environmental boundaries.
9

Knowledge-based support for surgical workflow analysis and recognition / Assistance fondée sur les connaissances pour l'analyse et la reconnaissance du flux de travail chirurgical

Dergachyova, Olga 28 November 2017 (has links)
L'assistance informatique est devenue une partie indispensable pour la réalisation de procédures chirurgicales modernes. Le désir de créer une nouvelle génération de blocs opératoires intelligents a incité les chercheurs à explorer les problèmes de perception et de compréhension automatique de la situation chirurgicale. Dans ce contexte de prise de conscience de la situation, un domaine de recherche en plein essor adresse la reconnaissance automatique du flux chirurgical. De grands progrès ont été réalisés pour la reconnaissance des phases et des gestes chirurgicaux. Pourtant, il existe encore un vide entre ces deux niveaux de granularité dans la hiérarchie du processus chirurgical. Très peu de recherche se concentre sur les activités chirurgicales portant des informations sémantiques vitales pour la compréhension de la situation. Deux facteurs importants entravent la progression. Tout d'abord, la reconnaissance et la prédiction automatique des activités chirurgicales sont des tâches très difficiles en raison de la courte durée d'une activité, de leur grand nombre et d'un flux de travail très complexe et une large variabilité. Deuxièmement, une quantité très limitée de données cliniques ne fournit pas suffisamment d'informations pour un apprentissage réussi et une reconnaissance précise. À notre avis, avant de reconnaître les activités chirurgicales, une analyse soigneuse des éléments qui composent l'activité est nécessaire pour choisir les bons signaux et les capteurs qui faciliteront la reconnaissance. Nous avons utilisé une approche d'apprentissage profond pour évaluer l'impact de différents éléments sémantiques de l'activité sur sa reconnaissance. Grâce à une étude approfondie, nous avons déterminé un ensemble minimum d'éléments suffisants pour une reconnaissance précise. Les informations sur la structure anatomique et l'instrument chirurgical sont de première importance. Nous avons également abordé le problème de la carence en matière de données en proposant des méthodes de transfert de connaissances à partir d'autres domaines ou chirurgies. Les méthodes de ''word embedding'' et d'apprentissage par transfert ont été proposées. Ils ont démontré leur efficacité sur la tâche de prédiction d'activité suivante offrant une augmentation de précision de 22%. De plus, des observations pertinentes / Computer assistance became indispensable part of modern surgical procedures. Desire of creating new generation of intelligent operating rooms incited researchers to explore problems of automatic perception and understanding of surgical situations. Situation awareness includes automatic recognition of surgical workflow. A great progress was achieved in recognition of surgical phases and gestures. Yet, there is still a blank between these two granularity levels in the hierarchy of surgical process. Very few research is focused on surgical activities carrying important semantic information vital for situation understanding. Two important factors impede the progress. First, automatic recognition and prediction of surgical activities is a highly challenging task due to short duration of activities, their great number and a very complex workflow with multitude of possible execution and sequencing ways. Secondly, very limited amount of clinical data provides not enough information for successful learning and accurate recognition. In our opinion, before recognizing surgical activities a careful analysis of elements that compose activity is necessary in order to chose right signals and sensors that will facilitate recognition. We used a deep learning approach to assess the impact of different semantic elements of activity on its recognition. Through an in-depth study we determined a minimal set of elements sufficient for an accurate recognition. Information about operated anatomical structure and surgical instrument was shown to be the most important. We also addressed the problem of data deficiency proposing methods for transfer of knowledge from other domains or surgeries. The methods of word embedding and transfer learning were proposed. They demonstrated their effectiveness on the task of next activity prediction offering 22% increase in accuracy. In addition, pertinent observations about the surgical practice were made during the study. In this work, we also addressed the problem of insufficient and improper validation of recognition methods. We proposed new validation metrics and approaches for assessing the performance that connect methods to targeted applications and better characterize capacities of the method. The work described in this these aims at clearing obstacles blocking the progress of the domain and proposes a new perspective on the problem of surgical workflow recognition.
10

Alzheimer prediction from connected speech extracts : assessment of generalisation to new data

Chafouleas, Geneviève 09 1900 (has links)
co-direction : Simona Brambati / Plusieurs avancées utilisant le discours obtenu de la tâche de description d’image ont été réalisées dans la détection de la maladie d’Alzheimer (AD). L’utilisation de caractéristiques linguistiques et acoustiques sélectionnées manuellement ainsi que l’utilisation de méthodologies d’apprentissage profond ont montré des résultats très prometteurs dans la classification des patients avec AD. Dans ce mémoire, nous comparons les deux méthodologies sur la scène Cookie Theft du Boston Aphasia Examination en entrainant des modèles avec des caractéristiques sélectionnées à partir des extraits textuels et audio ainsi que sur un modèle d’apprentissage profond BERT. Nos modèles sont entrainés sur l’ensemble de données ADReSS challenge plus récent et évaluées sur l’ensemble de données CCNA et vice versa pour mesurer la généralisation des modèles sur des exemples jamais vus dans des ensembles de données différents. Une évaluation détaillée de l’interprétabilité des modèles est effectuée pour déterminer si les modèles ont bien appris les représentations reliées à la maladie. Nous observons que les modèles ne performent pas bien lorsqu’ils sont évalués sur différents ensembles de données provenant du même domaine. Les représentations apprises des modèles entrainés sur les deux ensembles de données sont très différentes, ce qui pourrait expliquer le bas niveau de performance durant l’étape d’évaluation. Même si nous démontrons l’importance des caractéristiques linguistiques sur la classification des AD vs contrôle, nous observons que le meilleur modèle est BERT avec un niveau d’exactitude de 62.6% sur les données ADReSS challenge et 66.7% sur les données CCNA. / Many advances have been made in the early diagnosis of Alzheimer’s Disease (AD) using connected speech elicited from a picture description task. The use of hand built linguistic and acoustic features as well as Deep Learning approaches have shown promising results in the classification of AD patients. In this research, we compare both approaches on the Cookie Theft scene from the Boston Aphasia Examination with models trained with features derived from the text and audio extracts as well as a Deep Learning approach using BERT. We train our models on the newer ADReSS challenge dataset and evaluate on the CCNA dataset and vice versa in order to asses the generalisation of the trained model on unseen examples from a different dataset. A thorough evaluation of the interpretability of the models is performed to see how well each of the models learn the representations related to the disease. It is observed that the models do not perform well when evaluated on a different dataset from the same domain. The selected and learned representations from the models trained on either dataset are very different and may explain the low performance in the evaluation step. While we demonstrate the importance of linguistic features in the classification of AD vs non-AD, we find the best overall model is BERT which achieves a test accuracy of 62.6% on the ADRess challenge dataset and 66.7% on the CCNA dataset.

Page generated in 0.1407 seconds