Spelling suggestions: "subject:"approximately queda processing""
1 |
Flexible techniques for heterogeneous XML data retrievalSanz Blasco, Ismael 31 October 2007 (has links)
The progressive adoption of XML by new communities of users has motivated the appearance of applications that require the management of large and complex collections, which present a large amount of heterogeneity. Some relevant examples are present in the fields of bioinformatics, cultural heritage, ontology management and geographic information systems, where heterogeneity is not only reflected in the textual content of documents, but also in the presence of rich structures which cannot be properly accounted for using fixed schema definitions. Current approaches for dealing with heterogeneous XML data are, however, mainly focused at the content level, whereas at the structural level only a limited amount of heterogeneity is tolerated; for instance, weakening the parent-child relationship between nodes into the ancestor-descendant relationship. The main objective of this thesis is devising new approaches for querying heterogeneous XML collections. This general objective has several implications: First, a collection can present different levels of heterogeneity in different granularity levels; this fact has a significant impact in the selection of specific approaches for handling, indexing and querying the collection. Therefore, several metrics are proposed for evaluating the level of heterogeneity at different levels, based on information-theoretical considerations. These metrics can be employed for characterizing collections, and clustering together those collections which present similar characteristics. Second, the high structural variability implies that query techniques based on exact tree matching, such as the standard XPath and XQuery languages, are not suitable for heterogeneous XML collections. As a consequence, approximate querying techniques based on similarity measures must be adopted. Within the thesis, we present a formal framework for the creation of similarity measures which is based on a study of the literature that shows that most approaches for approximate XML retrieval (i) are highly tailored to very specific problems and (ii) use similarity measures for ranking that can be expressed as ad-hoc combinations of a set of --basic' measures. Some examples of these widely used measures are tf-idf for textual information and several variations of edit distances. Our approach wraps these basic measures into generic, parametrizable components that can be combined into complex measures by exploiting the composite pattern, commonly used in Software Engineering. This approach also allows us to integrate seamlessly highly specific measures, such as protein-oriented matching functions.Finally, these measures are employed for the approximate retrieval of data in a context of highly structural heterogeneity, using a new approach based on the concepts of pattern and fragment. In our context, a pattern is a concise representations of the information needs of a user, and a fragment is a match of a pattern found in the database. A pattern consists of a set of tree-structured elements --- basically an XML subtree that is intended to be found in the database, but with a flexible semantics that is strongly dependent on a particular similarity measure. For example, depending on a particular measure, the particular hierarchy of elements, or the ordering of siblings, may or may not be deemed to be relevant when searching for occurrences in the database. Fragment matching, as a query primitive, can deal with a much higher degree of flexibility than existing approaches. In this thesis we provide exhaustive and top-k query algorithms. In the latter case, we adopt an approach that does not require the similarity measure to be monotonic, as all previous XML top-k algorithms (usually based on Fagin's algorithm) do. We also presents two extensions which are important in practical settings: a specification for the integration of the aforementioned techniques into XQuery, and a clustering algorithm that is useful to manage complex result sets.All of the algorithms have been implemented as part of ArHeX, a toolkit for the development of multi-similarity XML applications, which supports fragment-based queries through an extension of the XQuery language, and includes graphical tools for designing similarity measures and querying collections. We have used ArHeX to demonstrate the effectiveness of our approach using both synthetic and real data sets, in the context of a biomedical research project.
|
2 |
Efficient Approximate OLAP Querying Over Time SeriesPerera, Kasun S., Hahmann, Martin, Lehner, Wolfgang, Pedersen, Torben Bach, Thomsen, Christian 15 June 2023 (has links)
The ongoing trend for data gathering not only produces larger volumes of data, but also increases the variety of recorded data types. Out of these, especially time series, e.g. various sensor readings, have attracted attention in the domains of business intelligence and decision making. As OLAP queries play a major role in these domains, it is desirable to also execute them on time series data. While this is not a problem on the conceptual level, it can become a bottleneck with regards to query run-time. In general, processing OLAP queries gets more computationally intensive as the volume of data grows. This is a particular problem when querying time series data, which generally contains multiple measures recorded at fine time granularities. Usually, this issue is addressed either by scaling up hardware or by employing workload based query optimization techniques. However, these solutions are either costly or require continuous maintenance. In this paper we propose an approach for approximate OLAP querying of time series that offers constant latency and is maintenance-free. To achieve this, we identify similarities between aggregation cuboids and propose algorithms that eliminate the redundancy these similarities present. In doing so, we can achieve compression rates of up to 80% while maintaining low average errors in the query results.
|
3 |
Design von Stichproben in analytischen DatenbankenRösch, Philipp 28 July 2009 (has links) (PDF)
Aktuelle Studien belegen ein rasantes, mehrdimensionales Wachstum in analytischen Datenbanken: Das Datenvolumen verzehnfachte sich in den letzten vier Jahren, die Anzahl der Nutzer wuchs um durchschnittlich 25% pro Jahr und die Anzahl der Anfragen verdoppelte sich seit 2004 jährlich. Bei den Anfragen handelt es sich zunehmend um komplexe Verbundanfragen mit Aggregationen; sie sind häufig explorativer Natur und werden interaktiv an das System gestellt. Eine Möglichkeit, der Forderung nach Interaktivität bei diesem starken, mehrdimensionalen Wachstum nachzukommen, stellen Stichproben und eine darauf aufsetzende näherungsweise Anfrageverarbeitung dar. Diese Lösung bietet signifikant kürzere Antwortzeiten sowie Schätzungen mit probabilistischen Fehlergrenzen. Mit den Operationen Verbund, Gruppierung und Aggregation als Hauptbestandteile analytischer Anfragen ergeben sich folgende Anforderungen an das Design von Stichproben in analytischen Datenbanken: Zwischen den Stichproben fremdschlüsselverbundener Relationen ist die referenzielle Integrität zu gewährleisten, sämtliche Gruppen sind angemessen zu repräsentieren und Aggregationsattribute sind auf extreme Werte zu untersuchen.
In dieser Dissertation wird für jedes dieser Teilprobleme ein Stichprobenverfahren vorgestellt, das sich durch speicherplatzbeschränkte Stichproben und geringe Schätzfehler auszeichnet. Im ersten der vorgestellten Verfahren wird durch eine korrelierte Stichprobenerhebung die referenzielle Integrität bei minimalem zusätzlichen Speicherplatz gewährleistet. Das zweite vorgestellte Stichprobenverfahren hat durch eine Berücksichtigung der Streuung der Daten eine angemessene Repräsentation sämtlicher Gruppen zur Folge und unterstützt damit beliebige Gruppierungen, und im dritten Verfahren ermöglicht eine mehrdimensionale Ausreißerbehandlung geringe Schätzfehler für beliebig viele Aggregationsattribute. Für jedes dieser Verfahren wird die Qualität der resultierenden Stichprobe diskutiert und bei der Berechnung speicherplatzbeschränkter Stichproben berücksichtigt. Um den Berechnungsaufwand und damit die Systembelastung gering zu halten, werden für jeden Algorithmus Heuristiken vorgestellt, deren Kennzeichen hohe Effizienz und eine geringe Beeinflussung der Stichprobenqualität sind. Weiterhin werden alle möglichen Kombinationen der vorgestellten Stichprobenverfahren betrachtet; diese Kombinationen ermöglichen eine zusätzliche Verringerung der Schätzfehler und vergrößern gleichzeitig das Anwendungsspektrum der resultierenden Stichproben. Mit der Kombination aller drei Techniken wird ein Stichprobenverfahren vorgestellt, das alle Anforderungen an das Design von Stichproben in analytischen Datenbanken erfüllt und die Vorteile der Einzellösungen vereint. Damit ist es möglich, ein breites Spektrum an Anfragen mit hoher Genauigkeit näherungsweise zu beantworten. / Recent studies have shown the fast and multi-dimensional growth in analytical databases: Over the last four years, the data volume has risen by a factor of 10; the number of users has increased by an average of 25% per year; and the number of queries has been doubling every year since 2004. These queries have increasingly become complex join queries with aggregations; they are often of an explorative nature and interactively submitted to the system.
One option to address the need for interactivity in the context of this strong, multi-dimensional growth is the use of samples and an approximate query processing approach based on those samples. Such a solution offers significantly shorter response times as well as estimates with probabilistic error bounds. Given that joins, groupings and aggregations are the main components of analytical queries, the following requirements for the design of samples in analytical databases arise: 1) The foreign-key integrity between the samples of foreign-key related tables has to be preserved. 2) Any existing groups have to be represented appropriately. 3) Aggregation attributes have to be checked for extreme values.
For each of these sub-problems, this dissertation presents sampling techniques that are characterized by memory-bounded samples and low estimation errors. In the first of these presented approaches, a correlated sampling process guarantees the referential integrity while only using up a minimum of additional memory. The second illustrated sampling technique considers the data distribution, and as a result, any arbitrary grouping is supported; all groups are appropriately represented. In the third approach, the multi-column outlier handling leads to low estimation errors for any number of aggregation attributes. For all three approaches, the quality of the resulting samples is discussed and considered when computing memory-bounded samples. In order to keep the computation effort - and thus the system load - at a low level, heuristics are provided for each algorithm; these are marked by high efficiency and minimal effects on the sampling quality. Furthermore, the dissertation examines all possible combinations of the presented sampling techniques; such combinations allow to additionally reduce estimation errors while increasing the range of applicability for the resulting samples at the same time. With the combination of all three techniques, a sampling technique is introduced that meets all requirements for the design of samples in analytical databases and that merges the advantages of the individual techniques. Thereby, the approximate but very precise answering of a wide range of queries becomes a true possibility.
|
4 |
Design von Stichproben in analytischen DatenbankenRösch, Philipp 17 July 2009 (has links)
Aktuelle Studien belegen ein rasantes, mehrdimensionales Wachstum in analytischen Datenbanken: Das Datenvolumen verzehnfachte sich in den letzten vier Jahren, die Anzahl der Nutzer wuchs um durchschnittlich 25% pro Jahr und die Anzahl der Anfragen verdoppelte sich seit 2004 jährlich. Bei den Anfragen handelt es sich zunehmend um komplexe Verbundanfragen mit Aggregationen; sie sind häufig explorativer Natur und werden interaktiv an das System gestellt. Eine Möglichkeit, der Forderung nach Interaktivität bei diesem starken, mehrdimensionalen Wachstum nachzukommen, stellen Stichproben und eine darauf aufsetzende näherungsweise Anfrageverarbeitung dar. Diese Lösung bietet signifikant kürzere Antwortzeiten sowie Schätzungen mit probabilistischen Fehlergrenzen. Mit den Operationen Verbund, Gruppierung und Aggregation als Hauptbestandteile analytischer Anfragen ergeben sich folgende Anforderungen an das Design von Stichproben in analytischen Datenbanken: Zwischen den Stichproben fremdschlüsselverbundener Relationen ist die referenzielle Integrität zu gewährleisten, sämtliche Gruppen sind angemessen zu repräsentieren und Aggregationsattribute sind auf extreme Werte zu untersuchen.
In dieser Dissertation wird für jedes dieser Teilprobleme ein Stichprobenverfahren vorgestellt, das sich durch speicherplatzbeschränkte Stichproben und geringe Schätzfehler auszeichnet. Im ersten der vorgestellten Verfahren wird durch eine korrelierte Stichprobenerhebung die referenzielle Integrität bei minimalem zusätzlichen Speicherplatz gewährleistet. Das zweite vorgestellte Stichprobenverfahren hat durch eine Berücksichtigung der Streuung der Daten eine angemessene Repräsentation sämtlicher Gruppen zur Folge und unterstützt damit beliebige Gruppierungen, und im dritten Verfahren ermöglicht eine mehrdimensionale Ausreißerbehandlung geringe Schätzfehler für beliebig viele Aggregationsattribute. Für jedes dieser Verfahren wird die Qualität der resultierenden Stichprobe diskutiert und bei der Berechnung speicherplatzbeschränkter Stichproben berücksichtigt. Um den Berechnungsaufwand und damit die Systembelastung gering zu halten, werden für jeden Algorithmus Heuristiken vorgestellt, deren Kennzeichen hohe Effizienz und eine geringe Beeinflussung der Stichprobenqualität sind. Weiterhin werden alle möglichen Kombinationen der vorgestellten Stichprobenverfahren betrachtet; diese Kombinationen ermöglichen eine zusätzliche Verringerung der Schätzfehler und vergrößern gleichzeitig das Anwendungsspektrum der resultierenden Stichproben. Mit der Kombination aller drei Techniken wird ein Stichprobenverfahren vorgestellt, das alle Anforderungen an das Design von Stichproben in analytischen Datenbanken erfüllt und die Vorteile der Einzellösungen vereint. Damit ist es möglich, ein breites Spektrum an Anfragen mit hoher Genauigkeit näherungsweise zu beantworten. / Recent studies have shown the fast and multi-dimensional growth in analytical databases: Over the last four years, the data volume has risen by a factor of 10; the number of users has increased by an average of 25% per year; and the number of queries has been doubling every year since 2004. These queries have increasingly become complex join queries with aggregations; they are often of an explorative nature and interactively submitted to the system.
One option to address the need for interactivity in the context of this strong, multi-dimensional growth is the use of samples and an approximate query processing approach based on those samples. Such a solution offers significantly shorter response times as well as estimates with probabilistic error bounds. Given that joins, groupings and aggregations are the main components of analytical queries, the following requirements for the design of samples in analytical databases arise: 1) The foreign-key integrity between the samples of foreign-key related tables has to be preserved. 2) Any existing groups have to be represented appropriately. 3) Aggregation attributes have to be checked for extreme values.
For each of these sub-problems, this dissertation presents sampling techniques that are characterized by memory-bounded samples and low estimation errors. In the first of these presented approaches, a correlated sampling process guarantees the referential integrity while only using up a minimum of additional memory. The second illustrated sampling technique considers the data distribution, and as a result, any arbitrary grouping is supported; all groups are appropriately represented. In the third approach, the multi-column outlier handling leads to low estimation errors for any number of aggregation attributes. For all three approaches, the quality of the resulting samples is discussed and considered when computing memory-bounded samples. In order to keep the computation effort - and thus the system load - at a low level, heuristics are provided for each algorithm; these are marked by high efficiency and minimal effects on the sampling quality. Furthermore, the dissertation examines all possible combinations of the presented sampling techniques; such combinations allow to additionally reduce estimation errors while increasing the range of applicability for the resulting samples at the same time. With the combination of all three techniques, a sampling technique is introduced that meets all requirements for the design of samples in analytical databases and that merges the advantages of the individual techniques. Thereby, the approximate but very precise answering of a wide range of queries becomes a true possibility.
|
5 |
Sample Footprints für Data-Warehouse-DatenbankenRösch, Philipp, Lehner, Wolfgang 20 January 2023 (has links)
Durch stetig wachsende Datenmengen in aktuellen Data-Warehouse-Datenbanken erlangen Stichproben eine immer größer werdende Bedeutung. Insbesondere interaktive Analysen können von den signifikant kürzeren Antwortzeiten der approximativen Anfrageverarbeitung erheblich profitieren. Linked-Bernoulli-Synopsen bieten in diesem Szenario speichereffiziente, schemaweite Synopsen, d. h. Synopsen mit Stichproben jeder im Schema enthaltenen Tabelle bei minimalem Mehraufwand für die Erhaltung der referenziellen Integrität innerhalb der Synopse. Dies ermöglicht eine effiziente Unterstützung der näherungsweisen Beantwortung von Anfragen mit beliebigen Fremdschlüsselverbundoperationen. In diesem Artikel wird der Einsatz von Linked-Bernoulli-Synopsen in Data-Warehouse-Umgebungen detaillierter analysiert. Dies beinhaltet zum einen die Konstruktion speicherplatzbeschränkter, schemaweiter Synopsen, wobei unter anderem folgende Fragen adressiert werden: Wie kann der verfügbare Speicherplatz auf die einzelnen Stichproben aufgeteilt werden? Was sind die Auswirkungen auf den Mehraufwand? Zum anderen wird untersucht, wie Linked-Bernoulli-Synopsen für die Verwendung in Data-Warehouse-Datenbanken angepasst werden können. Hierfür werden eine inkrementelle Wartungsstrategie sowie eine Erweiterung um eine Ausreißerbehandlung für die Reduzierung von Schätzfehlern approximativer Antworten von Aggregationsanfragen mit Fremdschlüsselverbundoperationen vorgestellt. Eine Vielzahl von Experimenten zeigt, dass Linked-Bernoulli-Synopsen und die in diesem Artikel präsentierten Verfahren vielversprechend für den Einsatz in Data-Warehouse-Datenbanken sind. / With the amount of data in current data warehouse databases growing steadily, random sampling is continuously gaining in importance. In particular, interactive analyses of large datasets can greatly benefit from the significantly shorter response times of approximate query processing. In this scenario, Linked Bernoulli Synopses provide memory-efficient schema-level synopses, i. e., synopses that consist of random samples of each table in the schema with minimal overhead for retaining foreign-key integrity within the synopsis. This provides efficient support to the approximate answering of queries with arbitrary foreign-key joins. In this article, we focus on the application of Linked Bernoulli Synopses in data warehouse environments. On the one hand, we analyze the instantiation of memory-bounded synopses. Among others, we address the following questions: How can the given space be partitioned among the individual samples? What is the impact on the overhead? On the other hand, we consider further adaptations of Linked Bernoulli Synopses for usage in data warehouse databases. We show how synopses can incrementally be kept up-to-date when the underlying data changes. Further, we suggest additional outlier handling methods to reduce the estimation error of approximate answers of aggregation queries with foreign-key joins. With a variety of experiments, we show that Linked Bernoulli Synopses and the proposed techniques have great potential in the context of data warehouse databases.
|
6 |
A Sample Advisor for Approximate Query ProcessingRösch, Philipp, Lehner, Wolfgang 25 January 2023 (has links)
The rapid growth of current data warehouse systems makes random sampling a crucial component of modern data management systems. Although there is a large body of work on database sampling, the problem of automatic sample selection remained (almost) unaddressed. In this paper, we tackle the problem with a sample advisor. We propose a cost model to evaluate a sample for a given query. Based on this, our sample advisor determines the optimal set of samples for a given set of queries specified by an expert. We further propose an extension to utilize recorded workload information. In this case, the sample advisor takes the set of queries and a given memory bound into account for the computation of a sample advice. Additionally, we consider the merge of samples in case of overlapping sample advice and present both an exact and a heuristic solution. Within our evaluation, we analyze the properties of the cost model and compare the proposed algorithms. We further demonstrate the effectiveness and the efficiency of the heuristic solutions with a variety of experiments.
|
Page generated in 0.1317 seconds