• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Organic Phosphorus Compounds in Aquatic Sediments : Analysis, Abundance and Effects

Ahlgren, Joakim January 2006 (has links)
<p>Phosphorus (P) is often the limiting nutrient in lacustrine and brackish eco-systems, and enhanced input of P into an aquatic system might therefore negatively impact the environment. Because modern waste water manage-ment have reduced external P input to surface waters, internal P loading from the sediment has become one of the main P sources to aquatic ecosys-tems, in which relatively unknown organic P compounds seem to be more active in P recycling than previously thought.</p><p>This thesis focus is on improving analysis methods for organic P com-pounds in lacustrine and brackish sediments, as well as determining which of these compounds might be degraded, mobilized and subsequently recycled to the water column and on what temporal scale this occur. In both lacustrine and brackish environments, the most labile P compound was pyrophosphate, followed by different phosphate diesters. Phosphate monoesters were the least labile organic P compounds and degraded the slowest with sediment depth. In regulated lakes, it was shown that pyrophosphate and polyphos-phate compound groups were most related to lake trophic status, thus indi-cating their involvement in P cycling. This thesis also indicates faster P turn-over in sediment from the brackish environment compared to sediment from the lacustrine environment. </p><p>A comparison of organic P extraction procedures showed that pre-extraction with EDTA, and NaOH as main extractant, was most efficient for total P extraction. Using buffered sodium dithionite (BD) as a pre-extractant and NaOH as main extractant was most efficient for extracting the presuma-bly most labile organic P compound groups, pyrophosphate and polyphos-phate. Furthermore, it was determined that organic P compounds associated with humic substances were more recalcitrant than other P compounds, that the BD step used in traditional P fractionation might extract phosphate monoesters, and that NMR is a statistically valid method for quantification of organic P compounds in sediment extracts.</p>
2

Organic Phosphorus Compounds in Aquatic Sediments : Towards Molecular Identification with Mass Spectrometry

De Brabandere, Heidi January 2008 (has links)
Phosphorus (P) regulates trophic status in most aquatic systems. However, only bioavailable P contributes to primary production. In most lakes and shallow seas, mineralisation of sediment P into its bioavailable form and its release to the water column is important for maintaining primary production. Sediment organic P forms a substantial proportion of this P to be mineralised and can originate from different sources on land (farmland, forests, etc.) or from primary production in the lake. These organic P forms can thus be expected to have differing composition, degradability and recyclable P content. Knowledge of the chemical structure of sediment organic P compounds is scarce, mainly due to lack of appropriate analytical techniques. The commonly used 31P-nuclear magnetic resonance (31P-NMR) technique, only identifies P binding groups, so a mass spectrometric (MS) analysis method was developed that allows individual sediment organic P compounds to be identified. EDTA as pre-extractant resulted in the highest P yield in subsequent NaOH extraction. Extracted organic P compound groups were identified using 31P-NMR. For identification of specific P compounds with MS, a sample preparation method prior to electrospray tandem mass spectrometry (ESI-MS/MS) analysis was developed. Liquid chromatography (LC) with porous graphitic carbon prior to ESI-MS/MS enhanced sensitivity and selectivity, enabling several of the ions detected to be identified as nucleotides. 31P-NMR analysis showed P monoesters to be the most stabile P compounds throughout a lake sediment profile. The developed LC-ESI-MS/MS analysis method revealed that some monoester-P (nucleotides) were labile, while other P compounds increased in concentration with Baltic Sea sediment depth and were therefore considered stabile. Differences in patterns of P compounds detected were also shown depending on catchment characteristics in relation to Baltic Sea sediment age. For cost-effective management of eutrophication, knowledge of the sources of degradable organic P forms, contributing to internal loading, is needed. This thesis showed the developed LC-ESI-MS/MS analysis method to be a powerful analytical tool for this purpose.
3

Organic Phosphorus Compounds in Aquatic Sediments : Analysis, Abundance and Effects

Ahlgren, Joakim January 2006 (has links)
Phosphorus (P) is often the limiting nutrient in lacustrine and brackish eco-systems, and enhanced input of P into an aquatic system might therefore negatively impact the environment. Because modern waste water manage-ment have reduced external P input to surface waters, internal P loading from the sediment has become one of the main P sources to aquatic ecosys-tems, in which relatively unknown organic P compounds seem to be more active in P recycling than previously thought. This thesis focus is on improving analysis methods for organic P com-pounds in lacustrine and brackish sediments, as well as determining which of these compounds might be degraded, mobilized and subsequently recycled to the water column and on what temporal scale this occur. In both lacustrine and brackish environments, the most labile P compound was pyrophosphate, followed by different phosphate diesters. Phosphate monoesters were the least labile organic P compounds and degraded the slowest with sediment depth. In regulated lakes, it was shown that pyrophosphate and polyphos-phate compound groups were most related to lake trophic status, thus indi-cating their involvement in P cycling. This thesis also indicates faster P turn-over in sediment from the brackish environment compared to sediment from the lacustrine environment. A comparison of organic P extraction procedures showed that pre-extraction with EDTA, and NaOH as main extractant, was most efficient for total P extraction. Using buffered sodium dithionite (BD) as a pre-extractant and NaOH as main extractant was most efficient for extracting the presuma-bly most labile organic P compound groups, pyrophosphate and polyphos-phate. Furthermore, it was determined that organic P compounds associated with humic substances were more recalcitrant than other P compounds, that the BD step used in traditional P fractionation might extract phosphate monoesters, and that NMR is a statistically valid method for quantification of organic P compounds in sediment extracts.
4

Investigations on the Phenomena of Accumulation and Mobilization of Heavy Metals and Arsenic at the Sediment-Water Interface by Electrochemically Initiated Processes

Shrestha, Reena Amatya 04 October 2005 (has links) (PDF)
Metals occur naturally and are commonly found as contaminants in areas where industrial and municipal effluents are discharged. Aquatic sediments/environments are often polluted by heavy metals due to the temporal variations in anthropogenic input of contaminants via atmospheric deposition, catchment runoff, effluent inflow and dumping from industrial transportation, mining, agricultural and waste disposal sources [EPA, 1989]. The transfer of contaminants associated with settling inorganic particulates and/or biotic detritus from the water column to the sediments, no disturbance of sediments by physical mixing, slumping or bioturbation after deposition, no post-depositional degradation or mobility of the contaminants and the establishment of a reliable time axis. Therefore, metal contamination in aquatic environment is one of the problems. Rivers, coastal waters, sediments, soils, etc. were mostly contaminated by industrial and mining activities. Recently, the metal discharged from the industries have been controlled in the most developed countries. Even so, till the heavy metals dispersed in river sediments still need to be dealt with. Mainly, characterization, transformation, transport and fate of metal contaminants in the sediment to the aquatic environment need to be studied, because the sediment has great capacity to accumulate the contaminants. Exploitation and utilization of mines discharges heavy metals into the environment and contaminates neighboring aquatic ecosystem...
5

Investigations on the Phenomena of Accumulation and Mobilization of Heavy Metals and Arsenic at the Sediment-Water Interface by Electrochemically Initiated Processes

Shrestha, Reena Amatya 15 August 2005 (has links)
Metals occur naturally and are commonly found as contaminants in areas where industrial and municipal effluents are discharged. Aquatic sediments/environments are often polluted by heavy metals due to the temporal variations in anthropogenic input of contaminants via atmospheric deposition, catchment runoff, effluent inflow and dumping from industrial transportation, mining, agricultural and waste disposal sources [EPA, 1989]. The transfer of contaminants associated with settling inorganic particulates and/or biotic detritus from the water column to the sediments, no disturbance of sediments by physical mixing, slumping or bioturbation after deposition, no post-depositional degradation or mobility of the contaminants and the establishment of a reliable time axis. Therefore, metal contamination in aquatic environment is one of the problems. Rivers, coastal waters, sediments, soils, etc. were mostly contaminated by industrial and mining activities. Recently, the metal discharged from the industries have been controlled in the most developed countries. Even so, till the heavy metals dispersed in river sediments still need to be dealt with. Mainly, characterization, transformation, transport and fate of metal contaminants in the sediment to the aquatic environment need to be studied, because the sediment has great capacity to accumulate the contaminants. Exploitation and utilization of mines discharges heavy metals into the environment and contaminates neighboring aquatic ecosystem...

Page generated in 0.0983 seconds