Spelling suggestions: "subject:"arithmetical."" "subject:"arithmetic.""
1 |
A criatividade matem?tica de John Wallis na obra Arithmetica Infinitorum: contribui??es para ensino de c?lculo diferencial e integral na licenciatura em matem?ticaLopes, Gabriela Lucheze de Oliveira 24 February 2017 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2017-04-17T22:47:12Z
No. of bitstreams: 1
GabrielaLuchezeDeOliveiraLopes_TESE.pdf: 6049374 bytes, checksum: 3515f5da06487f76c77ce277db17c307 (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2017-04-19T23:33:36Z (GMT) No. of bitstreams: 1
GabrielaLuchezeDeOliveiraLopes_TESE.pdf: 6049374 bytes, checksum: 3515f5da06487f76c77ce277db17c307 (MD5) / Made available in DSpace on 2017-04-19T23:33:36Z (GMT). No. of bitstreams: 1
GabrielaLuchezeDeOliveiraLopes_TESE.pdf: 6049374 bytes, checksum: 3515f5da06487f76c77ce277db17c307 (MD5)
Previous issue date: 2017-02-24 / A pesquisa que originou este texto de tese de doutorado teve como objetivo examinar de
que forma as ideias de John Wallis, emergentes na obra Arithmetica Infinitorum, datada de
1656, apresentou inova??es que podem contribuir para o encaminhamento conceitual e
did?tico de no??es b?sicas da componente curricular de C?lculo Diferencial e Integral, no
curso de Licenciatura em Matem?tica. Nesse sentido, avaliamos o potencial pedag?gico da
referida obra para subsidiar o ensino de conceitos matem?ticos, em particular as no??es de
integrais, com vistas ao melhoramento do entendimento dos estudantes acerca dessas ideias
matem?ticas, tratadas nos Cursos de Forma??o de Professores de Matem?tica. Por
admitirmos que os alunos necessitam ampliar o n?mero de trajet?rias que levam ao
desenvolvimento de uma ideia Matem?tica ? que, neste trabalho, nos propusemos a
responder a seguinte quest?o: como a explora??o did?tica do exerc?cio criativo de um
matem?tico na hist?ria pode contribuir na abordagem pedag?gica para o ensino de
conte?dos de C?lculo e An?lise na Licenciatura em Matem?tica? Para tal, apoiamo-nos em
princ?pios de criatividade elaborados por Mihaly Csikszentmihalyi, que prop?s um modelo
para criatividade que leva em considera??o o contexto social e cultural. Por considerarmos
fundamental a explica??o do ciclo do pensamento referente ? inven??o matem?tica,
associamos a esses princ?pios os processos do Pensamento Matem?tico Avan?ado,
proposto por Tommy Dreyfus, de modo que destacamos como esses processos se conectam
com as no??es de criatividade. Assim, formulamos um modelo para examinarmos a obra
Arithmetica Infinitorum, indicando seus potenciais pedag?gicos para subsidiar o ensino de
conceitos matem?ticos baseado em um car?ter investigativo. De maneira que foi poss?vel
estabelecermos uma proposta de conex?o entre conhecimento matem?tico desenvolvido
historicamente por diferentes matem?ticos e seus potenciais conceituais epistemol?gicos,
com a possibilidade de ser implementada na a??o do professor de Matem?tica formador de
professores de Matem?tica, com vistas a desenvolver compet?ncias e habilidades para uma
futura atua??o do professor em forma??o. / The research which arose this doctorate?s thesis had as purpose examining in which ways
John Wallis? ideas, emerging in Arithmetica Infinitorum, dated 1656, has presented
contributing innovations for the didactic and conceptual guiding of Differential and
Integral Calculus? curricular components basic notions, in Mathematics Licentiate course.
For that matter, we evaluated the production?s pedagogical potential to subsidize
mathematical concepts? teaching, mainly integral notions, aiming theim provement of
students? understanding about these mathematical ideas, which are contemplated in the
Mathematics Teachers training course. Acknowledging that the students need to expand
the number of paths which lead to the development of a Mathematical idea, in this study
we propose to answer the following question: how can the didactic exploration of a
mathematician?s creative exercise contribute to the pedagogical approach for the Calculus
and Analysis teaching, in Mathematics Licentiate course? For that we leaned on the
creativity criteria discussed by Mihaly Csikszentmihalyi, due to considering it substantial
in the thinking cycle explanation regarding the Mathematics creation. We relate to these
principles the processes developed by Advanced Mathematical Thinking, suggested by
Tommy Dreyfus, in order to highlight how these processes attach to creativity notions.
Therefore, we formulated a model to examine the writing Arithmetica Infinitorum pointing
its pedagogical potential to subsidize mathematical concepts? teaching, based on
aninvestigative character. This way, it was possible to establish a connection proposal
between mathematical knowledge historically developed by different mathematicians and
their conceptual and epistemological potentials, with a possibility of being implemented in
Mathematics teacher?s actions, Mathematics teacher?s trainer, in order to grow expertise
and abilities for a forthcoming actuation of the training teacher.
|
2 |
L'arithmétique de Boèce : le transfert de savoir mathématique grecTamitegama, Nadiejda 11 1900 (has links)
Auteur romain du 6ème siècle connu pour ses traductions en latin des textes en grec
d’Aristote, Boèce a aussi rédigé une traduction-adaptation d’un texte de Nicomaque de
Gérase sur l’arithmétique. La première partie de ce mémoire de maîtrise est consacrée à
l’étude de Boèce en tant que passeur de savoir. Sa relation avec son père adoptif est mise
en valeur afin de soutenir l’hypothèse selon laquelle Boèce aurait acquis sa connaissance
du grec et son éducation tout en restant à Rome, sans avoir séjourné dans les écoles
athéniennes ou alexandriennes. La deuxième partie porte sur le contenu mathématique
du De institutione arithmetica. Après avoir montré comment le De arithmetica était relié
à l’oeuvre de traduction par Boèce des philosophes grecs, le choix de l’Introduction à
l’Arithmétique de Nicomaque comme point de départ du traité d’arithmétique de Boèce est
étudié. Un catalogue raisonné des concepts mathématiques présentés est ensuite proposé,
organisé autour des notions de quantité en soi et quantité relative qui conservent l’opposition
entre le Même et l’Autre et rappellent l’opposition fondamentale entre Limité et Illimité,
si chère aux pythagoriciens. Ce mémoire se termine par une analyse de la transmission du
De institutione arithmetica et de son influence sur les mathématiques et l’enseignement du
quadrivium au Moyen-Âge. / Roman author of the 6th century known for his Latin translations of Aristotle’s Greek
texts, Boethius has also composed a translation-adaptation of a treatise on arithmetics
written by Nicomachus of Gerasa.
The first section of this master’s thesis focuses on
characterizing Boethius as a intermediary, transferring Greek knowledge to the Latin West.
His relationship with Symmachus is highlighted in order to argue that Boethius had been
able to learn Greek and reach such a high level of learning in Rome, without the need
to study in the Athenian or Alexandrian schools of his time. The mathematical content
of the De institutione arithmetica is the main topic of the second section. After showing
how the De arithmetica is related to Boethius’ magnum opus – the Latin translation of
the Greek philosophers – the choice of Nicomachus of Gerasa’ Introduction to Arithmetics
as the source of Boethius’ treaty on arithmetics is studied. Then, a catalogue raisonné
of the mathematical concepts showcased is provided, organized around the notions of
quantity constant of itself and relative quantity which retain the opposition between the
Same and the Other and stems from the pythagoricians’ fondamental opposition between
the Limited and the Unlimited. This masters’ thesis ends with an analysis of the medieval
transmission of the De institutione arithmetica and of its influence on medieval mathematics
and education through the quadrivium.
|
Page generated in 0.054 seconds