651 |
Community assembly in subtidal macroalgal communities: The importance of environmental gradientsMucciarelli, Valerie 28 April 2014 (has links)
As human activity along coastlines increase, degradation and destruction of coastal marine ecosystems around the globe will increase at an alarming rate. In an effort to mitigate degradation and destruction of coastal marine ecosystems, artificial reefs have been used in restoration and enhancement projects. As artificial reefs are the main method of restoring diversity to a degraded area, it is important to know the mechanisms that drive marine community assembly and diversity on those reefs. Understanding community assembly patterns of foundational species, in particular, may provide insight to community assembly patterns at higher trophic levels. Subtidal macroalgae are commonly seen as foundational species in marine environments and both deterministic and stochastic processes play a role in their assembly. Environmental gradients, which are deterministic processes, play a significant role in structuring subtidal macroalgae communities. Depth, which is negatively correlated with light, is the main driver structuring subtidal macroalgal communities, however, other gradients such as water flow, and distance to a propagule source also impact their assembly. This study sought to determine which environmental gradients play a prominent role in subtidal macroalgal community assembly. To study subtidal macroalgal community assembly, 92 artificial reef units called Reef Balls were deployed east of the Ogden Point Breakwater in Victoria, BC in June 2009. Two years passed to allow for macroalgal growth and early successional processes to occur prior to sampling the communities on thirty Reef Balls via underwater collection in July 2011. Algae were sorted by genus and dry weight was measured. To determine effects of environmental gradients on community assembly light, depth, water flow, distance to the nearest Reef Ball and distance to the breakwater were measured at each Reef Ball. A redundancy analysis revealed that depth was the most significant environmental gradient shaping algae communities and had the greatest effect on upper canopy algae. Spatial plots reveal a depth and coastline zonation of algae genera comprising the canopy. While depth was found to significantly structure algae genera found in the canopy, there was a high degree of unexplained variation in the model. This suggests that unmeasured variables such as colonization and priority effects may be driving algal community structure in the lower canopy. Differences in community structure between upper and lower canopy reveal that multiple mechanisms are responsible for shaping subtidal algal communities. Further study is required to determine the importance of stochastic colonization events and priority effects. / Graduate / 0329 / vmucciar@uvic.ca
|
652 |
Rapid Assembly of Standardized and Non-standardized Biological PartsPower, Alexander 22 April 2013 (has links)
A primary aim of Synthetic Biology is the design and implementation of biological systems that perform engineered functions. However, the assembly of double-stranded DNA molecules is a major barrier to this progress, as it remains time consuming and laborious. Here I present three improved methods for DNA assembly. The first is based on, and makes use of, BioBricks. The second method relies on overlap-extension PCR to assemble non-standard parts. The third method improves upon overlap extension PCR by reducing the number of steps and the time it takes to assemble DNA. Finally, I show how the PCR-based assembly methods presented here can be used, in concert, with in vivo homologous recombination in yeast to assemble as many as 19 individual DNA parts in one step. These methods will also be used to assemble an incoherent feedforward loop, gene regulatory network.
|
653 |
Electrochemically directed self-assembly and conjugated polymer semiconductors for organic electronic applicationsPillai, Rajesh Gopalakrishna 13 October 2010 (has links)
The research work presented in this thesis investigates the mechanistic details of conventional as well as electrochemically directed self-assembly of alkylthiosulfates and explores the use of conjugated semiconducting polymers for organic electronic applications. Here, the significance of the use of conjugated polymers is twofold; first, to explore their applications in nanoelectronics and second, the possibility of using them as a top contact on the self-assembled monolayers (SAMs) for molecular electronic applications. Throughout this work, deposition of the organic materials was performed on prefabricated device structures that required no further lithographic or metal deposition steps after modification of the electrodes with the organic molecules.
Self-assembly of alkylthiosulfates on gold are reported to form monolayers identical to those formed from the corresponding alkanethiols. However, these self-assembly processes follow more complex mechanisms of monolayer formation than originally recognized. Studies on the mechanism of alkylthiosulfate chemisorption on gold shows that the self-assembly process is influenced by electrolyte and solvent. Plausible mechanisms have been proposed for the role of trace water in the solvent on conventional as well as electrochemically assisted self-assembly of alkylthiosulfates on gold. Electroanalytical and spectroscopic techniques have been used to explore the mechanistic details of electrochemically directed self-assembly of alkylthiosulfates on gold. It has been found that the self-assembly process is dynamic under electrochemical conditions and the heterogeneous electron transfer process between the organosulfur compound and gold is mediated through gold surface oxide and accompanied by corrosion.
Conducting polymers are serious candidates for organic electronic applications since their properties can be controlled by the manipulation of molecular architecture. Unique electronic properties of conjugated polypyrrole hybrid materials (PPy0DBS-Li+) with immobile dopant anions and mobile cations have been observed and explained on the basis of movement of the cations in an applied electric field. Based on this principle, functioning polymer resistive memory devices have been demonstrated which can be scalable to lower dimensions for nanoelectronics applications. Finally, proof of concept for using a conducting polymer as a top contact in molecular electronic devices created using electrochemically directed self-assembly is demonstrated.
|
654 |
Innovative designs in tissue engineering: improvements on scaffold fabrication and bioreactor designLi, Wen 24 January 2012 (has links)
This study consists of two projects related to Tissue Engineering: Engineering biomimetic scaffolds for bone regeneration and ear reconstruction, and bioreactor design for ex-vivo bioengineered scaffold.
The co-electrospinning method was used to produce composite membranes with different layers from gelatin and polycaprolactone (PCL) nanofibers, followed by paper-stacking cell seeded membranes to mimic the twisted plywood structure found in lobster cuticles. 3D laser scanner was used to capture the precise shape of a human ear model; and the negative molds were fabricated to compress scaffolds into the shape of human ear.
Design for assembly (DFA) method was used to analyze and improve the design of the current bioreactor. A new design is proposed to ease operation, save time and increase the application efficiency. The proposed solution is evaluated in a virtual environment using 3D assembly modeling and simulation.
|
655 |
Effective delivery of doxycycline and epidermal growth factor for expedited healing of chronic wounds.Kulkarni, Abhilash 29 October 2012 (has links)
The problems and high medical costs associated with chronic wounds necessitate an economical bioactive wound dressing. A new strategy was investigated to inhibit MMP-9 proteases and to release epidermal growth factor (EGF) to enhance healing. Doxycycline (DOX) and EGF were encapsulated on polyacrylic acid modified polyurethane film (PAA-PU) using Layer-by-Layer (LbL) assembly. The number of bilayers tuned the concentration of DOX and EGF released over time with over 94% bioactivity of EGF retained over 4 days. A simple wound model in which MMP-9 proteases were added to cell culture containing fibroblast cells demonstrated that DOX inhibited the proteases providing a protective environment for the released EGF to stimulate cell migration and proliferation at a faster healing rate. In the presence of DOX, only small amounts of the highly bioactive EGF are sufficient to close the wound. Results show that this is new and promising bioactive dressing for effective wound management.
|
656 |
Explorations in synthetic ion channel research: metal-ligand self-assembly and dissipative assemblyDambenieks, Andrew Krisjanis 18 April 2013 (has links)
This thesis explores fundamental design strategies in the field of synthetic ion channel research from two different perspectives. In the first part the synthesis of complex, shape persistent and thermodynamically stable structures based on metal-ligand self-assembly is explored. The second part examines transport systems with dynamic transport behavior in response to chemical inputs which more closely mimic the dissipative assembly of Natural ion channels.
In part one, two model systems, the ethylenediamine palladium(II) - 4,4’-bipyridine squares of Fujita and the trimeric bis(terpyridine) - iron(II) hexagonal macrocycles of Newkome, were targeted for structural modification towards becoming transport competent systems via improving the membrane partitioning characteristics of the final coordination compounds by increasing their lipophilicity.
Modifications of the Fujita system involved the generation of two lipophilic 4,4’-bipyridines with addition of lipophilic groups of 13 and 17 carbon long alkyl chains respectively at the 3 and 3’ positions. After pursuing multiple unsuccessful synthetic routes the successful syntheses afforded the final lipophilic 4,4’-bipyridines in overall yields of 19 to 21% over two synthetic steps. Mixtures of the newly generated lipophilic 4,4’-bipyridines with a known lipophilic ethylenediamine palladium(II) “corner” exhibited evidence of self-assembly from NMR spectroscopy experiments however attempts at further characterization by ESI-MS and X-ray crystallography were unproductive. The putative self-assembled structures were inactive in HPTS vesicle assays but showed erratic conductance activity in bilayer clamp experiments. However, the magnitude of the conductance observed was not indicative of the passage of ions through the internal pore of the square complex.
Modifications to the Newkome hexagons were aimed at generating overall neutral assemblies with external lipophilic groups. These modifications involved imparting a net -2 charge to the ligand via modifications to the terminal tridentate ligands so that upon coordination to octahedral metal centers in the +2 oxidation state the overall hexagonal complex would be neutrally charged. Two bis-polydentate ligands were generated; a dissymmetric molecule comprising one terpyridine and one dipicolinate tridentate ligand (TERPY-DPA) and a symmetrical molecule comprising two 2,2’-bipyridine-6-carboxylate tridentate ligands (BIPYA-BIPYA). The successful syntheses provided the desired trimethylsilylethyl ester protected compounds in yields of 9.2 and 7.5 % over 6 and 8 total synthetic steps for TERPY-DPA and BIPYA-BIPYA respectively. A new approach to metal-ligand complex formation by concomitant fluoride deprotection and assembly was demonstrated with a monomeric complex. Polymetallic complexes formed with a variety of transition metals based on colorimetric changes but the products were very intractable and resisted full structural or transport characterization.
Part two develops a system potentially capable of exhibiting dissipative assembly of active transporters. A library of six thioester containing compounds structurally related to known active oligoester compounds was synthesized. The successful syntheses provided the desired compounds in overall yields of 1.0 to 17.7% over 11 to 13 total synthetic steps. The intramolecular cyclization - truncation and thioester exchange reactions central to the dissipative assembly strategy were explored using a model compound. The full length compounds showed transport activity via the HPTS vesicle assay that was significantly below that of the lead compound. Bilayer clamp experiments however, revealed significant transport activity for both the full length as well as the truncated thiol molecules. In the case of the latter the transport events had exceedingly high conductivity for such a small molecule. This unexpected activity for both the full length and truncated compounds, although different, prevented a full implementation of dissipative assembly of transport. / Graduate / 0490 / 0485 / 0494
|
657 |
Dissipative Assembly of an Ion Transport SystemVu, Paul 02 January 2014 (has links)
This thesis describes the development of an ion channel system exhibiting dissipative assembly characteristics. In this system an active transporter based on an oligoester fragment terminated in a thioester of 6-aminohexanoic acid (HO2C-Hex-Adip-OctS-Hex-NH2) undergoes thioester cleavage to form a thiol terminated oligoester (HO2C-Hex-ADip-Oct-SH). This fragment was expected to be inactive for ion transport but previous work showed high activity in planar bilayer experiments. In this work, the high activity was shown to be due to the oxidized form of the thiol, the disulfide HO2C-ADip-Oct-SS-Oct-ADip-Hex-CO2H. Air oxidation was found to be quite rapid for the thiol based on ESI-MS (negative ion) and HPLC analysis. Under anaerobic conditions, the thiol fragment was an inactive species for ion transport. In situ air oxidation initiated transport activity associated with the disulfide.
The transporter HO2C-Hex-Adip-Oct-Hex-NH2 was active in planar bilayer experiments and was compared to the disulfide via activity grids. The activity of these two compounds was shown to be distinct from each other by conductance and channel duration differences. The activity of HO2C-Hex-Adip-Oct-Hex-NH2 was shown to die off in a period of 30 minutes at pH 8.2. Techniques were developed to stimulate and monitor activity and bilayer quality so that an inactive condition could be confirmed. The addition of Pr-S-Hex-NH3+-Cl as a fuel was shown to extend the activity of HO2C-Hex-Adip-Oct-Hex-NH2 by eight-fold in 1M CsCl electrolyte. Previous work had established the capability of thioester exchange reactions by a reaction between Pr-S-Hex-NH3+-Cl and benzyl thiol in a homogenous solution. The extended activity indicated that the same process may occur in a heterogeneous bilayer system. An inactive system created by the die-off in activity of HO2C-Hex-Adip-Oct-S-Hex-NH2 was treated with Pr-S-Hex-NH3+-Cl to regenerate activity. This cycle could be repeated once the activity died off again. All these findings are consistent with the dissipative assembly of a membrane transport system. / Graduate / 0490
|
658 |
Community assembly in subtidal macroalgal communities: The importance of environmental gradientsMucciarelli, Valerie 28 April 2014 (has links)
As human activity along coastlines increase, degradation and destruction of coastal marine ecosystems around the globe will increase at an alarming rate. In an effort to mitigate degradation and destruction of coastal marine ecosystems, artificial reefs have been used in restoration and enhancement projects. As artificial reefs are the main method of restoring diversity to a degraded area, it is important to know the mechanisms that drive marine community assembly and diversity on those reefs. Understanding community assembly patterns of foundational species, in particular, may provide insight to community assembly patterns at higher trophic levels. Subtidal macroalgae are commonly seen as foundational species in marine environments and both deterministic and stochastic processes play a role in their assembly. Environmental gradients, which are deterministic processes, play a significant role in structuring subtidal macroalgae communities. Depth, which is negatively correlated with light, is the main driver structuring subtidal macroalgal communities, however, other gradients such as water flow, and distance to a propagule source also impact their assembly. This study sought to determine which environmental gradients play a prominent role in subtidal macroalgal community assembly. To study subtidal macroalgal community assembly, 92 artificial reef units called Reef Balls were deployed east of the Ogden Point Breakwater in Victoria, BC in June 2009. Two years passed to allow for macroalgal growth and early successional processes to occur prior to sampling the communities on thirty Reef Balls via underwater collection in July 2011. Algae were sorted by genus and dry weight was measured. To determine effects of environmental gradients on community assembly light, depth, water flow, distance to the nearest Reef Ball and distance to the breakwater were measured at each Reef Ball. A redundancy analysis revealed that depth was the most significant environmental gradient shaping algae communities and had the greatest effect on upper canopy algae. Spatial plots reveal a depth and coastline zonation of algae genera comprising the canopy. While depth was found to significantly structure algae genera found in the canopy, there was a high degree of unexplained variation in the model. This suggests that unmeasured variables such as colonization and priority effects may be driving algal community structure in the lower canopy. Differences in community structure between upper and lower canopy reveal that multiple mechanisms are responsible for shaping subtidal algal communities. Further study is required to determine the importance of stochastic colonization events and priority effects. / Graduate / 0329 / vmucciar@uvic.ca
|
659 |
Theoretical Studies of Chiral Self-AssemblyPopa, Tatiana 19 December 2013 (has links)
Chiral structure formation is ubiquitous in surface self-assembly. Molecules that
do not undergo chiral recognition in solution or fluid phases can do so when their
configurational freedom is restricted in the two-dimensional field of a substrate. The
process holds promise in the manufacture of functional materials for chiral catalysis,
sensing or nonlinear optics. In this thesis, we investigate the influence of surface
attraction and geometry on adsorption-induced chiral separation in several model
molecules, as well as the relationships between molecular features, specifically molecular geometry and charge distribution, and chiral recognition at surface self-assembly.
Simple model molecules embody the fundamental interactions involved in supramolecular structure formation in experimental systems, and allow the in-depth investigation of key parameters.
Chiral pattern formation at the surface self-assembly is a complex problem, even
in cases where very small organic molecules are considered. Even though the adsorption behaviour of small organic molecules on gold surfaces has been investigated extensively so far experimentally and theoretically, much of their chiral behaviour is yet to be understood at a molecular level. Theoretical investigations of chiral self-assembly of sulfur containing amino acids onto achiral and chiral gold surfaces is also presented in this thesis. By understanding chiral self-assembly on solid surfaces, one may control and direct it towards creating materials with desired functionality. / Graduate / 0494 / tp.popa@gmail.com
|
660 |
Evaporation-driven, Template-assisted Nanocrystal Assembly (ETNA): A Novel Approach to Fabrication of Functional Nanocrystal SolidsGhadimi, Arya 24 February 2009 (has links)
Synthesis of nanocrystals is one of the most rapidly advancing areas of nanoscience, and today nanocrystals can be produced with impressive control over their composition, size, shape, polydispersity, and surface chemistry. As such, they are ideal building blocks for fabricating hierarchical architectures with tailorable functionality on every level of the hierarchy. Here an evaporation-driven, template-assisted nanocrystal assembly (ETNA) technique is developed, providing a novel and general approach to fabricating freestanding, 3D, functional architectures using diverse combinations of colloidal nanocrystal species and porous templates of arbitrary geometry. Colloidal PbS (photoluminescent) and CoFe2O4 (superparamagnetic) nanocrystals are template-assembled to fabricate freestanding nanorods and inverse opals, which retain the size-dependent properties of their constituent building blocks while replicating the geometry and preserving the functionality of the templates. Further multifunctionality is demonstrated through mixed-nanocrystal architectures which exhibit the aggregate functionality of their building blocks.
|
Page generated in 0.0349 seconds