• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 24
  • 6
  • 6
  • 5
  • 2
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 77
  • 46
  • 46
  • 32
  • 31
  • 31
  • 31
  • 22
  • 17
  • 17
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Visão computacional para veículos inteligentes usando câmeras embarcadas / Computer vision for intelligent vehicles using embedded cameras

Paula, Maurício Braga de January 2015 (has links)
O uso de sistemas de assistência ao motorista (DAS) baseados em visão tem contribuído consideravelmente na redução de acidentes e consequentemente no auxílio de uma melhor condução. Estes sistemas utilizam basicamente uma câmera de vídeo embarcada (normalmente fixada no para-brisa) com o propósito de extrair informações acerca da rodovia e ajudar o condutor num melhor processo de dirigibilidade. Pequenas distrações ou a perda de concentração podem ser suficientes para que um acidente ocorra. Este trabalho apresenta uma proposta para o desenvolvimento de algoritmos para extrair informações sobre a sinalização em rodovias. Mais precisamente, serão abordados algoritmos de calibração de câmera explorando a geometria da pista, de extração da marcação de pintura (sinalização horizontal) e detecção e identificação de placas de trânsito (sinalização vertical). Os resultados experimentais indicam que o método de calibração de câmera alcançou bons resultados na obtenção dos parâmetros extrínsecos com erros inferiores a 0:5 . O erro médio encontrado nos experimentos com relação a estimativa da altura da câmera foi em torno de 12 cm (erro relativo aproximado de 10%), permitindo explorar o uso da realidade aumentada como uma possível aplicação. A acurácia global para a detecção e reconhecimento da sinalização horizontal (marcas seccionadas, contínuas e mistas) foi acima de 96% perante uma diversidade de situações apresentadas, tais como: sombras, variação de iluminação, degradação do asfalto e pintura. O uso da câmera calibrada para a detecção da sinalização vertical contribui para delimitar o espaço de varredura da janela deslizante do detector, bem como realizar a procura por placas em uma única escala para cada região de busca, caracterizada pela distância ao veículo. Os resultados apresentados reportam uma taxa global de classificação de aproximadamente 99% para o sinal de proibido ultrapassar, considerando-se uma base de dados limitada a 962 amostras. / The use of driver assistance systems (DAS) based on computer vision has helped considerably in reducing accidents and consequently aid in better driving. These systems primarily use an embedded video camera (usually fixed on the windshield) for the purpose of extracting information about the highway and assisting the driver in a better handling process. Small distractions or loss of concentration may be sufficient for an accident to occur. This work presents the development of algorithms to extract information about traffic signs on highways. More specifically, this work will tackle a camera calibration algorithm that exploits the geometry of the road track, algorithms for the extraction of road marking paint (lane markings) and detection and identification of vertical traffic signs. Experimental results indicate that the proposed method for obtaining the extrinsic parameters achieve good results with errors of less than 0:5 . The average error in our experiments, related to the camera height, were around 12 cm (relative error around 10%). Global accuracy for the detection and classification of road lane markings (dashed, solid, dashed-solid, solid-dashed or double solid) were over 96%. Finally, our camera calibration algorithm was used to reduce the search region and to define the scale of a slidingwindow detector for vertical traffic signs. The use of the calibrated camera for the detection of traffic signs contributes to define the scanning area of the sliding window and perform a search for signs on a unique scale for each region of interest, determined by the distance to the vehicle. The results reported a global classification rate of approximately 99% for the no overtaking sign, considering a limited of 962 samples.
42

Smart Car Technologies: A Comprehensive Study of the State of the Art with Analysis and Trends

January 2015 (has links)
abstract: Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of features in a car has also increased. As a result, the user interaction inside the car has become overcrowded and more complex. This has increased the amount of distraction while driving and has also increased the number of accidents due to distracted driving. This thesis focuses on the critical analysis of today’s in-car environment covering two main aspects, Multi Modal Interaction (MMI), and Advanced Driver Assistance Systems (ADAS), to minimize the distraction. It also provides deep market research on future trends in the smart car technology. After careful analysis, it was observed that an infotainment screen cluttered with lots of small icons, a center stack with a plethora of small buttons and a poor Voice Recognition (VR) results in high cognitive load, and these are the reasons for the increased driver distraction. Though the VR has become a standard technology, the current state of technology is focused on features oriented design and a sales driven approach. Most of the automotive manufacturers are focusing on making the VR better but attaining perfection in VR is not the answer as there are inherent challenges and limitations in respect to the in-car environment and cognitive load. Accordingly, the research proposed a novel in-car interaction design solution: Multi-Modal Interaction (MMI). The MMI is a new term when used in the context of vehicles, but it is widely used in human-human interaction. The approach offers a non-intrusive alternative to the driver to interact with the features in the car. With the focus on user-centered design, the MMI and ADAS can potentially help to reduce the distraction. To support the discussion, an experiment was conducted to benchmark a minimalist UI design. An engineering based method was used to test and measure distraction of four different UIs with varying numbers of icons and screen sizes. Lastly, in order to compete with the market, the basic features that are provided by all the other competitors cannot be eliminated, but the hard work can be done to improve the HCaI and to make driving safer. / Dissertation/Thesis / Date collected about reaction time in the experiment_Excel / Masters Thesis Computer Science 2015
43

Look-Ahead Information Based Optimization Strategy for Hybrid Electric Vehicles

January 2016 (has links)
abstract: The environmental impact of the fossil fuels has increased tremendously in the last decade. This impact is one of the most contributing factors of global warming. This research aims to reduce the amount of fuel consumed by vehicles through optimizing the control scheme for the future route information. Taking advantage of more degrees of freedom available within PHEV, HEV, and FCHEV “energy management” allows more margin to maximize efficiency in the propulsion systems. The application focuses on reducing the energy consumption in vehicles by acquiring information about the road grade. Road elevations are obtained by use of Geographic Information System (GIS) maps to optimize the controller. The optimization is then reflected on the powertrain of the vehicle.The approach uses a Model Predictive Control (MPC) algorithm that allows the energy management strategy to leverage road grade to prepare the vehicle for minimizing energy consumption during an uphill and potential energy harvesting during a downhill. The control algorithm will predict future energy/power requirements of the vehicle and optimize the performance by instructing the power split between the internal combustion engine (ICE) and the electric-drive system. Allowing for more efficient operation and higher performance of the PHEV, and HEV. Implementation of different strategies, such as MPC and Dynamic Programming (DP), is considered for optimizing energy management systems. These strategies are utilized to have a low processing time. This approach allows the optimization to be integrated with ADAS applications, using current technology for implementable real time applications. The Thesis presents multiple control strategies designed, implemented, and tested using real-world road elevation data from three different routes. Initial simulation based results show significant energy savings. The savings range between 11.84% and 25.5% for both Rule Based (RB) and DP strategies on the real world tested routes. Future work will take advantage of vehicle connectivity and ADAS systems to utilize Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), traffic information, and sensor fusion to further optimize the PHEV and HEV toward more energy efficient operation. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2016
44

Autonomous integrity monitoring of navigation maps on board intelligent vehicles / Intégrité des bases de données navigables pour le véhicule intelligent

Zinoune, Clément 11 September 2014 (has links)
Les véhicules dits intelligents actuellement développés par la plupart des constructeurs automobiles, ainsi que les véhicules autonomes nécessitent des informations sur le contexte dans lequel ils évoluent. Certaines de ces informations (par exemple la courbure de la route, la forme des intersections, les limitations de vitesses) sont fournies en temps réel par le système de navigation qui exploite les données de cartes routières numériques. Des défauts résultant de l’évolution du réseau routier ou d’imprécisions lors de la collecte de données peuvent être contenus dans ces cartes numériques et entraîner le dysfonctionnement des systèmes d’aide à la conduite. Les recherches menées dans cette thèse visent à rendre le véhicule capable d’évaluer, de manière autonome et en temps réel, l’intégrité des informations fournies par son système de navigation. Les véhicules de série sont désormais équipés d’un grand nombre de capteurs qui transmettent leurs mesures sur le réseau central interne du véhicule. Ces données sont donc facilement accessibles mais de faible précision. Le défi de cette thèse réside donc dans l’évaluation de l’intégrité des informations cartographiques malgré un faible degré de redondance et l’absence de données fiables. On s’adresse à deux types de défauts cartographiques : les défauts structurels et les défauts géométriques. Les défauts structurels concernent les connections entre les routes (intersections). Un cas particulier de défaut structurel est traité : la détection de ronds-points qui n’apparaissent pas dans la carte numérique. Ce défaut est essentiel car il est fréquent (surtout en Europe) et perturbe le fonctionnement des aides à la conduite. Les ronds-points sont détectés à partir de la forme typique de la trajectoire du véhicule lorsqu’il les traverse, puis sont mémorisés pour avertir les aides à la conduite aux prochains passages du véhicule sur la zone. Les imprécisions de représentation du tracé des routes dans la carte numérique sont quant à elles désignées comme défauts géométriques. Un formalisme mathématique est développé pour détecter ces défauts en comparant l’estimation de la position du véhicule d’après la carte à une autre estimation indépendante de la carte. Cette seconde estimation pouvant elle aussi être affectée par un défaut, les anciens trajetsdu véhicule sur la même zone sont utilisés. Un test statistique est finalement utilisé pour améliorer la méthode de détection de défauts géométriques dans des conditions de mesures bruitées. Toutes les méthodes développées dans le cadre de cette thèse sont évaluées à l’aide de données réelles. / Several Intelligent Vehicles capabilities from Advanced Driving Assistance Systems (ADAS) to Autonomous Driving functions depend on a priori information provided by navigation maps. Whilst these were intended for driver guidance as they store road network information, today they are even used in applications that control vehicle motion. In general, the vehicle position is projected onto the map to relate with links in the stored road network. However, maps might contain faults, leading to navigation and situation understanding errors. Therefore, the integrity of the map-matched estimates must be monitored to avoid failures that can lead to hazardous situations. The main focus of this research is the real-time autonomous evaluation of faults in navigation maps used in intelligent vehicles. Current passenger vehicles are equipped with proprioceptive sensors that allow estimating accurately the vehicle state over short periods of time rather than long trajectories. They include receiver for Global Navigation Satellite System (GNSS) and are also increasingly equipped with exteroceptive sensors like radar or smart camera systems. The challenge resides on evaluating the integrity of the navigation maps using vehicle on board sensors. Two types of map faults are considered: Structural Faults, addressing connectivity (e.g., intersections). Geometric Faults, addressing geographic location and road geometry (i.e. shape). Initially, a particular structural navigation map fault is addressed: the detection of roundabouts absent in the navigation map. This structural fault is problematic for ADAS and Autonomous Driving. The roundabouts are detected by classifying the shape of the vehicle trajectory. This is stored for use in ADAS and Autonomous Driving functions on future vehicle trips on the same area. Next, the geometry of the map is addressed. The main difficulties to do the autonomous integrity monitoring are the lack of reliable information and the low level of redundancy. This thesis introduces a mathematical framework based on the use of repeated vehicle trips to assess the integrity of map information. A sequential test is then developed to make it robust to noisy sensor data. The mathematical framework is demonstrated theoretically including the derivation of definitions and associated properties. Experiments using data acquired in real traffic conditions illustrate the performance of the proposed approaches.
45

Visão computacional para veículos inteligentes usando câmeras embarcadas / Computer vision for intelligent vehicles using embedded cameras

Paula, Maurício Braga de January 2015 (has links)
O uso de sistemas de assistência ao motorista (DAS) baseados em visão tem contribuído consideravelmente na redução de acidentes e consequentemente no auxílio de uma melhor condução. Estes sistemas utilizam basicamente uma câmera de vídeo embarcada (normalmente fixada no para-brisa) com o propósito de extrair informações acerca da rodovia e ajudar o condutor num melhor processo de dirigibilidade. Pequenas distrações ou a perda de concentração podem ser suficientes para que um acidente ocorra. Este trabalho apresenta uma proposta para o desenvolvimento de algoritmos para extrair informações sobre a sinalização em rodovias. Mais precisamente, serão abordados algoritmos de calibração de câmera explorando a geometria da pista, de extração da marcação de pintura (sinalização horizontal) e detecção e identificação de placas de trânsito (sinalização vertical). Os resultados experimentais indicam que o método de calibração de câmera alcançou bons resultados na obtenção dos parâmetros extrínsecos com erros inferiores a 0:5 . O erro médio encontrado nos experimentos com relação a estimativa da altura da câmera foi em torno de 12 cm (erro relativo aproximado de 10%), permitindo explorar o uso da realidade aumentada como uma possível aplicação. A acurácia global para a detecção e reconhecimento da sinalização horizontal (marcas seccionadas, contínuas e mistas) foi acima de 96% perante uma diversidade de situações apresentadas, tais como: sombras, variação de iluminação, degradação do asfalto e pintura. O uso da câmera calibrada para a detecção da sinalização vertical contribui para delimitar o espaço de varredura da janela deslizante do detector, bem como realizar a procura por placas em uma única escala para cada região de busca, caracterizada pela distância ao veículo. Os resultados apresentados reportam uma taxa global de classificação de aproximadamente 99% para o sinal de proibido ultrapassar, considerando-se uma base de dados limitada a 962 amostras. / The use of driver assistance systems (DAS) based on computer vision has helped considerably in reducing accidents and consequently aid in better driving. These systems primarily use an embedded video camera (usually fixed on the windshield) for the purpose of extracting information about the highway and assisting the driver in a better handling process. Small distractions or loss of concentration may be sufficient for an accident to occur. This work presents the development of algorithms to extract information about traffic signs on highways. More specifically, this work will tackle a camera calibration algorithm that exploits the geometry of the road track, algorithms for the extraction of road marking paint (lane markings) and detection and identification of vertical traffic signs. Experimental results indicate that the proposed method for obtaining the extrinsic parameters achieve good results with errors of less than 0:5 . The average error in our experiments, related to the camera height, were around 12 cm (relative error around 10%). Global accuracy for the detection and classification of road lane markings (dashed, solid, dashed-solid, solid-dashed or double solid) were over 96%. Finally, our camera calibration algorithm was used to reduce the search region and to define the scale of a slidingwindow detector for vertical traffic signs. The use of the calibrated camera for the detection of traffic signs contributes to define the scanning area of the sliding window and perform a search for signs on a unique scale for each region of interest, determined by the distance to the vehicle. The results reported a global classification rate of approximately 99% for the no overtaking sign, considering a limited of 962 samples.
46

Visão computacional para veículos inteligentes usando câmeras embarcadas / Computer vision for intelligent vehicles using embedded cameras

Paula, Maurício Braga de January 2015 (has links)
O uso de sistemas de assistência ao motorista (DAS) baseados em visão tem contribuído consideravelmente na redução de acidentes e consequentemente no auxílio de uma melhor condução. Estes sistemas utilizam basicamente uma câmera de vídeo embarcada (normalmente fixada no para-brisa) com o propósito de extrair informações acerca da rodovia e ajudar o condutor num melhor processo de dirigibilidade. Pequenas distrações ou a perda de concentração podem ser suficientes para que um acidente ocorra. Este trabalho apresenta uma proposta para o desenvolvimento de algoritmos para extrair informações sobre a sinalização em rodovias. Mais precisamente, serão abordados algoritmos de calibração de câmera explorando a geometria da pista, de extração da marcação de pintura (sinalização horizontal) e detecção e identificação de placas de trânsito (sinalização vertical). Os resultados experimentais indicam que o método de calibração de câmera alcançou bons resultados na obtenção dos parâmetros extrínsecos com erros inferiores a 0:5 . O erro médio encontrado nos experimentos com relação a estimativa da altura da câmera foi em torno de 12 cm (erro relativo aproximado de 10%), permitindo explorar o uso da realidade aumentada como uma possível aplicação. A acurácia global para a detecção e reconhecimento da sinalização horizontal (marcas seccionadas, contínuas e mistas) foi acima de 96% perante uma diversidade de situações apresentadas, tais como: sombras, variação de iluminação, degradação do asfalto e pintura. O uso da câmera calibrada para a detecção da sinalização vertical contribui para delimitar o espaço de varredura da janela deslizante do detector, bem como realizar a procura por placas em uma única escala para cada região de busca, caracterizada pela distância ao veículo. Os resultados apresentados reportam uma taxa global de classificação de aproximadamente 99% para o sinal de proibido ultrapassar, considerando-se uma base de dados limitada a 962 amostras. / The use of driver assistance systems (DAS) based on computer vision has helped considerably in reducing accidents and consequently aid in better driving. These systems primarily use an embedded video camera (usually fixed on the windshield) for the purpose of extracting information about the highway and assisting the driver in a better handling process. Small distractions or loss of concentration may be sufficient for an accident to occur. This work presents the development of algorithms to extract information about traffic signs on highways. More specifically, this work will tackle a camera calibration algorithm that exploits the geometry of the road track, algorithms for the extraction of road marking paint (lane markings) and detection and identification of vertical traffic signs. Experimental results indicate that the proposed method for obtaining the extrinsic parameters achieve good results with errors of less than 0:5 . The average error in our experiments, related to the camera height, were around 12 cm (relative error around 10%). Global accuracy for the detection and classification of road lane markings (dashed, solid, dashed-solid, solid-dashed or double solid) were over 96%. Finally, our camera calibration algorithm was used to reduce the search region and to define the scale of a slidingwindow detector for vertical traffic signs. The use of the calibrated camera for the detection of traffic signs contributes to define the scanning area of the sliding window and perform a search for signs on a unique scale for each region of interest, determined by the distance to the vehicle. The results reported a global classification rate of approximately 99% for the no overtaking sign, considering a limited of 962 samples.
47

The development of the rural water supply and sanitation sector in Zimbabwe between 1974 and 1987 : the design and impact of donor supported projects

Boydell, Robert Arthur January 1990 (has links)
Although the International Drinking Water Supply and Sanitation Decade has generated great interest from foreign aid donors, its impact. in terms of increased service levels has been poor. These disappointing results have been explained by the UN and other donors in terms of inadequate funding and lack of cost recovery, poor operations and maintenance, lack of personnel, unacceptable technology, poor logistics and non involvement of the beneficiaries. However, an alternative explanation revolves around factors contributing to poor project design. These include the lack of understanding of the development process, donor bias and self interest, and poor coordination and commitment by the recipient government. A review of the development and trends of contemporary aid philosophy and its translation in to rural development and water and sanitation projects, which led to the launch of the IDWSSD, provides a number of lessons that can be used to formulate a hybrid model for project design and the sector development process, that defines the relative roles of donors, recipient governments and people themselves. The model is based on coordinated development, community participation, and sector growth from pilot projects to large scale programmes. The developments in the rural water and sanitation sector that took place in Zimbabwe from 1974 to 1987, provide a unique opportunity to test this model using a systems analysis approach. After gaining Independence in 1980, Zimbabwe's development assistance funding grew tenfold with the influx of foreign donors, and major commitments were made by the new Government to rural development and the goals of the IDWSSD. However, the large investments in water and sanitation which included the preparation of a national master plan with external technical assistance, had both positive and negative impacts on the continuing development of the sector, the start of which can be traced back, well before Independence, to small pilot projects sponsored by non government organizations that used appropriate technology developed by the Rhodesian Government. This development process and the changing approach to project design is illustrated by a series of case studies of projects supported by multilateral and bilateral donors, and non government organizations, that were milestones during this period. Finally the project and sector development model is modified based on the practical lessons from Zimbabwe and recommendations for future practice are made together with suggestions for areas of further research.
48

Návrhové podmínky pro polygon specializovaný na autonomní vozidla / Design conditions for a polygon specializing in autonomous vehicles

Trhlík, Tomáš January 2019 (has links)
The aim of this diploma thesis is the research of building polygons for the testing of autonomous vehicles, from the point of view of road technology and also designing aspects. In the thesis are mentioned 9 most important world test polygons and their description of design parameters. There are described particular stages of automation from foreign organizations which are concerned with research and development in the automotive industry. In addition, there are described basic advanced driver assistance systems and connectivity between vehicles and infrastructure. Conclusion also contains the assessment of existing aerodrome test areas for autonomous vehicles.
49

Image segmentation and stereo vision matching based on declivity line : application for vehicle detection. / Segmentation et mise en correspondance d'image de stéréovision basée sur la ligne de déclivité : application à la détection de véhicule

Li, Yaqian 04 June 2010 (has links)
Dans le cadre de systèmes d’aide à la conduite, nous avons contribué aux approches de stéréovision pour l’extraction de contour, la mise en correspondance des images stéréoscopiques et la détection de véhicules. L’extraction de contour réalisée est basée sur le concept declivity line que nous avons proposé. La declivity line est construite en liant des déclivités selon leur position relative et similarité d’intensité. L’extraction de contour est obtenue en filtrant les declivity lines construites basées sur leurs caractéristiques. Les résultats expérimentaux montrent que la declivity lines méthode extrait plus de l’informations utiles comparées à l’opérateur déclivité qui les a filtrées. Des points de contour sont ensuite mis en correspondance en utilisant la programmation dynamique et les caractéristiques de declivity lines pour réduire le nombre de faux appariements. Dans notre méthode de mise en correspondance, la declivity lines contribue à la reconstruction détaillée de la scène 3D. Finalement, la caractéristique symétrie des véhicules sont exploitées comme critère pour la détection de véhicule. Pour ce faire, nous étendons le concept de carte de symétrie monoculaire à la stéréovision. En conséquence, en effectuant la détection de véhicule sur la carte de disparité, une carte de symétrie (axe; largeur; disparity) est construite au lieu d’une carte de symétrie (axe; largeur). Dans notre concept, des obstacles sont examinés à différentes profondeurs pour éviter la perturbation de la scène complexe dont le concept monoculaire souffre. / In the framework of driving assistance systems, we contributed to stereo vision approaches for edge extraction, matching of stereoscopic pair of images and vehicles detection. Edge extraction is performed based on the concept of declivity line we introduced. Declivity line is constructed by connecting declivities according to their relative position and intensity similarity. Edge extraction is obtained by filtering constructed declivity lines based on their characteristics. Experimental results show that declivity line method extracts additional useful information compared to declivity operator which filtered them out. Edge points of declivity lines are then matched using dynamic programming, and characteristics of declivity line reduce the number of false matching. In our matching method, declivity line contributes to detailed reconstruction of 3D scene. Finally, symmetrical characteristic of vehicles are exploited as a criterion for their detection. To do so, we extend the monocular concept of symmetry map to stereo concept. Consequently, by performing vehicle detection on disparity map, a (axis; width; disparity) symmetry map is constructed instead of an (axis; width) symmetry map. In our stereo concept, obstacles are examined at different depths thus avoiding disturbance of complex scene from which monocular concept suffers.
50

Robust Object Detection under Varying Illuminations and Distortions

January 2020 (has links)
abstract: Object detection is an interesting computer vision area that is concerned with the detection of object instances belonging to specific classes of interest as well as the localization of these instances in images and/or videos. Object detection serves as a vital module in many computer vision based applications. This work focuses on the development of object detection methods that exhibit increased robustness to varying illuminations and image quality. In this work, two methods for robust object detection are presented. In the context of varying illumination, this work focuses on robust generic obstacle detection and collision warning in Advanced Driver Assistance Systems (ADAS) under varying illumination conditions. The highlight of the first method is the ability to detect all obstacles without prior knowledge and detect partially occluded obstacles including the obstacles that have not completely appeared in the frame (truncated obstacles). It is first shown that the angular distortion in the Inverse Perspective Mapping (IPM) domain belonging to obstacle edges varies as a function of their corresponding 2D location in the camera plane. This information is used to generate object proposals. A novel proposal assessment method based on fusing statistical properties from both the IPM image and the camera image to perform robust outlier elimination and false positive reduction is also proposed. In the context of image quality, this work focuses on robust multiple-class object detection using deep neural networks for images with varying quality. The use of Generative Adversarial Networks (GANs) is proposed in a novel generative framework to generate features that provide robustness for object detection on reduced quality images. The proposed GAN-based Detection of Objects (GAN-DO) framework is not restricted to any particular architecture and can be generalized to several deep neural network (DNN) based architectures. The resulting deep neural network maintains the exact architecture as the selected baseline model without adding to the model parameter complexity or inference speed. Performance results provided using GAN-DO on object detection datasets establish an improved robustness to varying image quality and a higher object detection and classification accuracy compared to the existing approaches. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2020

Page generated in 0.0948 seconds