31 |
Estabilidade de atividade basal, recuperação e formação de memórias em redes de neurônios / Stability of basal activity, retrieval and formation of memories in networks of spiking neuronsAgnes, Everton João January 2014 (has links)
O encéfalo, através de complexa atividade elétrica, é capaz de processar diversos tipos de informação, que são reconhecidos, memorizados e recuperados. A base do processamento é dada pela atividade de neurônios, que se comunicam principalmente através de eventos discretos no tempo: os potenciais de ação. Os disparos desses potenciais de ação podem ser observados por técnicas experimentais; por exemplo, é possível medir os instantes dos disparos dos potenciais de ação de centenas de neurônios em camundongos vivos. No entanto, as intensidades das conexões entre esses neurônios não são totalmente acessíveis, o que, além de outros fatores, impossibilita um entendimento mais completo do funcionamento da rede neural. Desse modo, a neurociência computacional tem papel importante para o entendimento dos processos envolvidos no encéfalo, em vários níveis de detalhamento. Dentro da área da neurociência computacional, o presente trabalho aborda a aquisição e recuperação de memórias dadas por padrões espaciais, onde o espaço é definido pelos neurônios da rede simulada. Primeiro utilizamos o conceito da regra de Hebb para construir redes de neurônios com conexões previamente definidas por esses padrões espaciais. Se as memórias são armazenadas nas conexões entre os neurônios, então a inclusão de um período de aprendizado torna necessária a implementação de plasticidade nos pesos sinápticos. As regras de modificação sináptica que permitem memorização (Hebbianas) geralmente causam instabilidades na atividade dos neurônios. Com isso desenvolvemos regras de plasticidade homeostática capazes de estabilizar a atividade basal de redes de neurônios. Finalizamos com o estudo analítico e numérico de regras de plasticidade sináptica que permitam o aprendizado não-supervisionado por elevação da taxa de disparos de potenciais de ação de neurônios. Mostramos que, com uma regra de aprendizado baseada em evidências experimentais, a recuperação de padrões memorizados é possível, com ativação supervisionada ou espontânea. / The brain, through complex electrical activity, is able to process different types of information, which are encoded, stored and retrieved. The processing is based on the activity of neurons that communicate primarily by discrete events in time: the action potentials. These action potentials can be observed via experimental techniques; for example, it is possible to measure the moment of action potentials (spikes) of hundreds of neurons in living mice. However, the strength of the connections among these neurons is not fully accessible, which, among other factors, preclude a more complete understanding of the neural network. Thus, computational neuroscience has an important role in understanding the processes involved in the brain, at various levels of detail. Within the field of computational neuroscience, this work presents a study on the acquisition and retrieval of memories given by spatial patterns, where space is defined by the neurons of the simulated network. First we use Hebb’s rule to build up networks of spiking neurons with static connections chosen from these spatial patterns. If memories are stored in the connections between neurons, then synaptic weights should be plastic so that learning is possible. Synaptic plasticity rules that allow memory formation (Hebbian) usually introduce instabilities on the neurons’ activity. Therefore, we developed homeostatic plasticity rules that stabilize baseline activity regimes in neural networks of spiking neurons. This thesis ends with analytical and numerical studies regarding plasticity rules that allow unsupervised learning by increasing the activity of specific neurons. We show that, with a plasticity rule based on experimental evidences, retrieval of learned patterns is possible, either with supervised or spontaneous recalling.
|
32 |
Estabilidade de atividade basal, recuperação e formação de memórias em redes de neurônios / Stability of basal activity, retrieval and formation of memories in networks of spiking neuronsAgnes, Everton João January 2014 (has links)
O encéfalo, através de complexa atividade elétrica, é capaz de processar diversos tipos de informação, que são reconhecidos, memorizados e recuperados. A base do processamento é dada pela atividade de neurônios, que se comunicam principalmente através de eventos discretos no tempo: os potenciais de ação. Os disparos desses potenciais de ação podem ser observados por técnicas experimentais; por exemplo, é possível medir os instantes dos disparos dos potenciais de ação de centenas de neurônios em camundongos vivos. No entanto, as intensidades das conexões entre esses neurônios não são totalmente acessíveis, o que, além de outros fatores, impossibilita um entendimento mais completo do funcionamento da rede neural. Desse modo, a neurociência computacional tem papel importante para o entendimento dos processos envolvidos no encéfalo, em vários níveis de detalhamento. Dentro da área da neurociência computacional, o presente trabalho aborda a aquisição e recuperação de memórias dadas por padrões espaciais, onde o espaço é definido pelos neurônios da rede simulada. Primeiro utilizamos o conceito da regra de Hebb para construir redes de neurônios com conexões previamente definidas por esses padrões espaciais. Se as memórias são armazenadas nas conexões entre os neurônios, então a inclusão de um período de aprendizado torna necessária a implementação de plasticidade nos pesos sinápticos. As regras de modificação sináptica que permitem memorização (Hebbianas) geralmente causam instabilidades na atividade dos neurônios. Com isso desenvolvemos regras de plasticidade homeostática capazes de estabilizar a atividade basal de redes de neurônios. Finalizamos com o estudo analítico e numérico de regras de plasticidade sináptica que permitam o aprendizado não-supervisionado por elevação da taxa de disparos de potenciais de ação de neurônios. Mostramos que, com uma regra de aprendizado baseada em evidências experimentais, a recuperação de padrões memorizados é possível, com ativação supervisionada ou espontânea. / The brain, through complex electrical activity, is able to process different types of information, which are encoded, stored and retrieved. The processing is based on the activity of neurons that communicate primarily by discrete events in time: the action potentials. These action potentials can be observed via experimental techniques; for example, it is possible to measure the moment of action potentials (spikes) of hundreds of neurons in living mice. However, the strength of the connections among these neurons is not fully accessible, which, among other factors, preclude a more complete understanding of the neural network. Thus, computational neuroscience has an important role in understanding the processes involved in the brain, at various levels of detail. Within the field of computational neuroscience, this work presents a study on the acquisition and retrieval of memories given by spatial patterns, where space is defined by the neurons of the simulated network. First we use Hebb’s rule to build up networks of spiking neurons with static connections chosen from these spatial patterns. If memories are stored in the connections between neurons, then synaptic weights should be plastic so that learning is possible. Synaptic plasticity rules that allow memory formation (Hebbian) usually introduce instabilities on the neurons’ activity. Therefore, we developed homeostatic plasticity rules that stabilize baseline activity regimes in neural networks of spiking neurons. This thesis ends with analytical and numerical studies regarding plasticity rules that allow unsupervised learning by increasing the activity of specific neurons. We show that, with a plasticity rule based on experimental evidences, retrieval of learned patterns is possible, either with supervised or spontaneous recalling.
|
33 |
Um estudo das ligações entre memorias associativas fuzzy implicativas e equações relacionadas fuzzy com aplicações / An investigation of the relationship between implicative fuzzy associative memories and fuzzy relational with applicationsMiyasaki, Rodolfo 25 June 2007 (has links)
Orientador: Peter Sussner / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T11:23:27Z (GMT). No. of bitstreams: 1
Miyasaki_Rodolfo_M.pdf: 1324947 bytes, checksum: a4ab87815520ddfd33ed0ac1b2ffcac2 (MD5)
Previous issue date: 2008 / Resumo: As memórias associativas (AMs - Associative Memories) permitem armazenar associações de padrões e recuperar desejados padrões de saída mesmo após a apresentação de possíveis versões incompletas e/ou distorcidas de um padrão de entrada. As memórias associativas fuzzy (FAMs - Fuzzy Associative emories) s¿ao modelos de AMs cujos padrões de entrada e saída são conjuntos fuzzy. As FAMs mostraram-se poderosas ferramentas na implementação em sistemas de base de regras fuzzy. O fato de modelos de FAMs estarem relacionadas à morfologia matemática (MM) levou ao recente desenvolvimento das memórias associativas morfológicas fuzzy (FMAMs - Fuzzy Morphological Associative Memories), em particular as memórias associativas fuzzy implicativas (IFAMs - Implicative Fuzzy Associative Memories). Os neurônios da FMAM executam uma das operações elementares da MM, i.'é, erosão, dilatação, anti-erosão ou anti-dilatação. Essa dissertação relaciona a existência de soluções nos sistemas de equações relacionais fuzzy (FREs - Fuzzy Relational Equations) à recordação perfeita das IFAMs. Formulamos o problema de escolher um modelo apropriado de IFAM para uma dada aplicação através de um problema de otimização. Mais precisamente, determinamos o modelo de IFAM dado pela t-norma parametrizada de Yager que minimiza o erro entre os padrões recordados e os desejados padrões de saída. Uma imagem em tons de cinza pode ser expressa como uma relação fuzzy e dado uma família de conjuntos fuzzy, pode-se comprimi-la através de FREs. Assim, surge o problema inverso de encontrar uma reconstrução da imagem original a partir da imagem comprimida. Essa dissertação de mestrado determina a melhor aproximação por meio de uma IFAM / Abstract: Associative Memories (AMs) allow for the storage of pattern associations and the retrieval of the desired output patterns upon the presentation of a possibly noisy or imcomplete version of an input pattern. Fuzzy Associative Memories (FAMs) are models of AMs whose input and output patterns are fuzzy sets. FAMs have proven to be a powerful tool for implementing fuzzy rule-based systems. The fact that FAMs models are related to mathematical morphology (MM) has led to the development of fuzzy morphological associative memories (FMAMs), in particular fuzzy implicative fuzzy associative memories (IFAMs). The neurons of an FMAM perform one of the elementary operations of MM which as erosion, dilation, anti-erosion and anti-dilation. This thesis relates the existence of solutions in systems of fuzzy relational equations (FREs) to the perfect recall using IFAMs. We formulated the problem of choosing an appriopriate IFAM model for a given application as an optimization problem. More precisely, we determined the IFAM model given by a parameterized Yager t-norm which minimizes the error between the recalled patterns and the desired output patterns. A gray-scale image can be expressed as a fuzzy relation and, given a family of fuzzy sets, it can be compressed by means of FREs. Thus, the inverse problem arises of finding a reconstruction of the image original based on the compression. This master thesis determines the best approximation by means of a IFAMs / Mestrado / Mestre em Matemática Aplicada
|
34 |
Behavioural Studies and Computational Models Exploring Visual Properties that Lead to the First Floral Contact by BumblebeesOrbán, Levente L. January 2014 (has links)
This dissertation explored the way in which bumblebees' visual system helps them discover their first flower. Previous studies found bees have unlearned preferences for parts of a flower, such as its colour and shape. The first study pitted two variables against each other: pattern type: sunburst or bull's eye, versus the location of the pattern: shapes appeared peripherally or centrally. We observed free-flying bees in a flight cage using Radio-Frequency Identification (RFID) tracking. The results show two distinct behavioural preferences: Pattern type predicts landing: bees prefer radial over concentric patterns, regardless of whether the radial pattern is on the perimeter or near the centre of the flower. Pattern location predicts exploration: bees were more likely to explore the inside of artificial flowers if the shapes were displayed near the centre of the flower, regardless of whether the pattern was radial or concentric. As part of the second component, we implemented a mathematical model aimed at explaining how bees come to prefer radial patterns, leafy backgrounds and symmetry. The model was based on unsupervised neural networks used to describe cognitive mechanisms. The results captured with the results of multiple behavioural experiments. The model suggests that bees choose computationally "cheaper" stimuli, those that contain less information. The third study tested the computational load hypothesis generated by the artificial neural networks. Visual properties of symmetry, and spatial frequency were tested. Studying free-flying bees in a flight cage using motion-sensitive video recordings, we found that bees preferred 4-axis symmetrical patterns in both low and high frequency displays.
|
35 |
Memórias associativas recorrentes exponenciais fuzzy baseadas em medidas de similaridade / Recurrent exponential fuzzy associative memories based on similarity measures.Souza, Aline Cristina de, 1991- 04 July 2015 (has links)
Orientador: Marcos Eduardo Ribeiro do Valle Mesquita / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T12:11:26Z (GMT). No. of bitstreams: 1
Souza_AlineCristinade_M.pdf: 2392301 bytes, checksum: 8b771e0b97302577daaf84624b0c4751 (MD5)
Previous issue date: 2015 / Resumo: Memórias associativas são modelos matemáticos inspirados pela capacidade do cérebro humano de armazenar e recordar informações por meio de associações. Tais modelos são projetados para armazenar um conjunto finito de associações chamado de conjunto das memórias fundamentais. Além disso, espera-se que a memória associativa seja capaz de recuperar uma informação armazenada mesmo a partir de um item incompleto ou ruidoso. As Memórias Associativas Recorrentes Exponenciais Fuzzy (REFAMs, acrônimo do termo em inglês Recurrent Exponential Fuzzy Associative Memories) podem ser efetivamente utilizadas para o armazenamento e recordação de uma família finita de conjuntos fuzzy. Em geral, uma REFAM define recursivamente uma sequência de conjuntos fuzzy obtidos usando médias ponderadas e exponenciais dos valores de medida de similaridade. Experimentos computacionais relacionados à recuperação de imagens em tons de cinza ruidosas mostraram que os novos modelos podem apresentar ótima capacidade absoluta de armazenamento bem como excelente tolerância a ruído / Abstract: Associative memories are mathematical models inspired by the human brain ability to store and recall information by means of associations. Such models are designed for the storage of a finite set of associations called the fundamental memories set. Furthermore, the associative memory is expected to be able to retrieve a stored information even from an incomplete or noisy item. The Recurrent Exponential Fuzzy Associative Memories (REFAMs) can be effectively used for storage and recall of a finite family of fuzzy sets. In general, a REFAM defines recursively a sequence of fuzzy sets obtained using weighted averages and exponentials of similarity measure values. Computational experiments concerning the retrieval of noisy gray-scale images revealed that the novel models may exhibit optimal absolute storage capacity as well as excellent noise tolerance / Mestrado / Matematica Aplicada / Mestra em Matemática Aplicada
|
36 |
Optimalizace klasifikačních algoritmů založených na kartézském součinu / Optimization of Crossproduct-Based Classification AlgorithmsKajan, Michal Unknown Date (has links)
This thesis deals with the packet classification problem in computer networks. It introduces packet classification along with the demands on classification algorithms. Different approaches to packet classification and several concrete examples of modern classification algorithms with their properties are described. The aim is on algorithms which can be implemented in hardware. Crossproduct-based algorithms are described in more detail whose biggest advantage is classification speed, but their disadvantage consists in great memory requirements. Several optimization methods based on state space search are presented. These optimization methods are based on reduction of original ruleset by selecting a small number of rules to associative memory. Lastly, utilization of associative memory as a flexible part of classification is illustrated together with the potential hardware implementation of such memory directly on a chip.
|
37 |
Dynamically Self-reconfigurable Systems for Machine IntelligenceHe, Haibo 03 October 2006 (has links)
No description available.
|
38 |
Implication fonctionnelle de l’interface hippocampo-corticale dans le processus de consolidation systémique de la mémoire associative non spatiale chez le rat : contribution du mécanisme d’étiquetage neuronalLesburgueres, Edith 18 December 2009 (has links)
La formation et le stockage à long terme des souvenirs mettent en jeu le processus de consolidation mnésique. S’il est maintenant bien admis que ce processus requiert une interaction entre la formation hippocampique et différentes régions corticales dépositaires des souvenirs, les mécanismes qui sous-tendent ce dialogue restent encore mal connus. En combinant chez le rat des approches comportementale, d’imagerie cellulaire et d’inactivations pharmacologiques des voies de signalisation intracérébrales impliquées dans l’épigenèse, nous avons cherché dans ce travail de thèse à élucider certains des mécanismes responsables de la formation des souvenirs au niveau cortical. Dans la perspective de pouvoir appréhender de façon temporellement précise le dialogue hippocampo-cortical au cours du processus de consolidation à l’échelle systémique, notre premier objectif a été de valider une épreuve comportementale adaptée à l’étude de ce processus, la transmission sociale de préférence alimentaire. Nos résultats ont montré que cette tâche, qui ne nécessite qu’une phase d’acquisition ponctuelle, induit une mémoire robuste et durable. Cette mémoire s’appuie sur des stimuli olfactifs de nature non spatiale. Son caractère associatif nécessite l’implication fonctionnelle de l’hippocampe et de régions corticales spécifiques comme le cortex orbitofrontal qui joue un rôle crucial dans le traitement d’informations de nature olfactive. Dans une deuxième série d’expériences, une approche d’imagerie cellulaire utilisant le facteur de transcription c-fos couplée à une approche pharmacologique d’inactivation transitoire région-spécifique a révélé le rôle crucial du cortex orbitofrontal dans le rappel d’informations anciennes (délai de 30 jours) mais pas récentes (délai de 1 jour). Nous avons par ailleurs mis en évidence que la consolidation des informations dans cette structure s’accompagnait de changements progressifs de l’architecture des réseaux neuronaux comme la formation de nouvelles synapses (synaptogénèse) ou l’augmentation du nombre d’épines dendritiques. En accord avec le modèle standard de la consolidation mnésique, ce recrutement cortical était associé à un désengagement de l’hippocampe, confirmant le rôle transitoire de cette structure dans le rappel à long terme d’informations olfactives associatives. Dans une troisième série d’expériences, nous nous sommes intéressés aux mécanismes pouvant sous-tendre l’établissement de la mémoire à long terme au niveau cortical. Nos résultats apportent un éclairage nouveau sur la dynamique des interactions hippocampo-corticales pendant la consolidation systémique en démontrant la nécessité d’un étiquetage des assemblées neuronales du cortex orbitofrontal dès l’encodage des informations. Un blocage de cet étiquetage par une inactivation de ce cortex au moment de l’interaction sociale (phase d’acquisition) a perturbé le rappel à long terme et empêché les modifications de l’architecture des réseaux neuronaux corticaux normalement associés au stockage à long terme des informations olfactives. Sur le plan cellulaire, cet étiquetage requiert l’activation des récepteurs NMDA et de la voie des MAPK, ainsi que l’acétylation des protéines histones impliquées dans la régulation de l’état transcriptionnel de la chromatine. En modifiant leur état d’acétylation, nous avons pu moduler positivement ou négativement le rappel à long terme des informations olfactives relatives à la préférence alimentaire. Ainsi, nos données soulignent l’importance du dialogue hippocampo-cortical dans l’établissement de la mémoire à long terme. / Abstract :
|
39 |
Memória associativa em redes neurais realimentadas / Associative memory in feedback neural networksCorrêa, Leonardo Garcia 17 June 2004 (has links)
Nessa dissertação, é investigado o armazenamento e a recuperação de padrões de forma biologicamente inspirada no cérebro. Os modelos estudados consistiram de redes neurais realimentadas, que tentam modelar certos aspectos dinâmicos do funcionamento do cérebro. Em particular, atenção especial foi dada às Redes Neurais Celulares, que constituem uma versão localmente acoplada do já clássico modelo de Hopfield. Além da análise de estabilidade das redes consideradas, foi realizado um teste com o intuito de avaliar o desempenho de diversos métodos de construção de memórias endereçáveis por conteúdo (memórias associativas) em Redes Neurais Celulares. / In this dissertation we investigate biologically inspired models of pattern storage and retrieval, by means of feedback neural networks. These networks try to model some of the dynamical aspects of brain functioning. The study concentrated in Cellular Neural Networks, a local coupled version of the classical Hopfield model. The research comprised stability analysis of the referred networks, as well as performance tests of various methods for content-addressable (associative) memory design in Cellular Neural Networks.
|
40 |
Investigation into the wafer-scale integration of fine-grain parallel processing computer systemsJones, Simon Richard January 1986 (has links)
This thesis investigates the potential of wafer-scale integration (WSI) for the implementation of low-cost fine-grain parallel processing computer systems. As WSI is a relatively new subject, there was little work on which to base investigations. Indeed, most WSI architectures existed only as untried and sometimes vague proposals. Accordingly, the research strategy approached this problem by identifying a representative WSI structure and architecture on which to base investigations. An analysis of architectural proposals identified associative memory to be general purpose parallel processing component used in a wide range of WSI architectures. Furthermore, this analysis provided a set of WSI-level design requirements to evaluate the sustainability of different architectures as research vehicles. The WSI-ASP (WASP) device, which has a large associative memory as its main component is shown to meet these requirements and hence was chosen as the research vehicle. Consequently, this thesis addresses WSI potential through an in-depth investigation into the feasibility of implementing a large associative memory for the WASP device that meets the demanding technological constraints of WSI. Overall, the thesis concludes that WSI offers significant potential for the implementation of low-cost fine-grain parallel processing computer systems. However, due to the dual constraints of thermal management and the area required for the power distribution network, power density is a major design constraint in WSI. Indeed, it is shown that WSI power densities need to be an order of magnitude lower than VLSI power densities. The thesis demonstrates that for associative memories at least, VLSI designs are unsuited to implementation in WSI. Rather, it is shown that WSI circuits must be closely matched to the operational environment to assure suitable power densities. These circuits are significantly larger than their VLSI equivalents. Nonetheless, the thesis demonstrates that by concentrating on the most power intensive circuits, it is possible to achieve acceptable power densities with only a modest increase in area overheads.
|
Page generated in 0.0949 seconds