• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 15
  • 5
  • 1
  • Tagged with
  • 49
  • 19
  • 14
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Akkretionsscheibenmodelle mit äußerer Einstrahlung

Hammer, Nicolay J. January 2004 (has links)
Tübingen, Univ., Diplomarb., 2004.
12

Atmosphären und synthetische Spektren von Neutronensternen

Deetjen, Jochen Lennart, January 2002 (has links)
Tübingen, Univ., Diss., 2002.
13

Der Einfluss des fundamentalen Massenverhältnisses auf die Teilchenbeschleunigung durch Plasmainstabilitäten / The influence of the fundamental mass-ratio on particle acceleration by plasma instabilities

Burkart, Thomas January 2010 (has links) (PDF)
Im Rahmen dieser Arbeit wurde ein dreidimensionaler vollrelativistischer und parallelisierter Particle-in-Cell Code geschrieben, ausführlich getestet und angewandt. Der Code ACRONYM ist variabel einsetzbar und von der Genauigkeit und Stabilität her State-of-the-Art und somit konkurrenzfähig zu den sonstigen in der Astrophysik eingesetzten Codes anderer Gruppen. Die Energie bleibt bis auf einen Fehler von < 0.03% erhalten, die Divergenz des Magnetfeldes bleibt immer unter einem Wert von 10^{-12} und die Skalierung wurde mittlerweile bis zu einem Clustergröße von einigen 10000 CPUs getestet. In dieser Arbeit wurde dann, nach der Entwicklung des Codes, der Einfluss des fundamentalen Massenverhältnisses m_p/m_e auf die Teilchenbeschleunigung durch Plasmainstabilitäten untersucht. Dies ist relevant und wichtig, da in PiC-Simulationen in den allermeisten Fällen nicht mit dem realen Massenverhältnis gerechnet wird, da sonst viel zu viel Rechenleistung benötigt würde, um zu sehen, was mit den Protonen geschieht und was ihr Einfluss auf die leichten Teilchen wie Elektronen und Positronen ist. Zu diesem Zweck wurden Simulationen mit Massenverhältnissen zwischen m_p/m_e = 1.0 und 200.0 durchgeführt. Diese haben alle gemeinsam, dass periodische Randbedingungen verwendet wurden und das zur Verfügung stehende Simulationsgebiet mit jeweils zwei gegeneinander strömenden Plasmapopulationen vollständig gefüllt wurde, um jegliche Art von auftretenden Schocks auszuschließen. Die Rohdaten der einzelnen Simulationen wurden auf vielfältige Art und Weise analysiert, es wurden z.B. Schnitte durch die Teilchenverteilung erstellt, sowie ein- oder zweidimensionale Histogramme und Energieverläufe betrachtet. Dabei haben sich folgende Kernpunkte ergeben: Für Massenverhältnisse bis etwa m_p/m_e = 20 bildet sich die gesamte Zweistrom-Instabilität in nur einer Phase aus, das heißt, es bilden sich von ringförmigen Magnetfeldern umgebene Flussschläuche aus, die dann verschmelzen, bis nur noch zwei übrig sind und alle Teilchen werden über den gesamten Verlauf der Instabilität beschleunigt. Es ist damit zu folgern, dass die unterschiedlich schweren Teilchenspezies Protonen und Elektronen/Positronen durch die relativ nahe beieinander liegenden Massen noch so stark gekoppelt sind, dass sich nur eine Instabilität entwickeln kann. Bei großen Massenverhältnissen (m_p/m_e > 20) ist eine deutliche Trennung in zwei Phasen der Instabilität zu erkennen. Zuerst bilden sich wiederum Flussschläuche aus, diese verschmelzen miteinander (zu zweien oder mehr), bevor der erste Teil der Instabilität abflaut. Anschließend entstehen wieder ringförmige Magnetfelder und Flussschläuche, von denen einer meist deutlich stärker ist als all die anderen, das bedeutet, dass dieser von stärkeren Magnetfeldern umgeben ist und eine höhere Teilchendichte aufweist. Im Rahmen dieser zweigeteilten Instabilität werden die Elektronen und Positronen nur in der ersten Phase signifikant beschleunigt, die deutlich schwereren Protonen gewinnen über den gesamten Zeitraum Energie. Die höchstenergetischen Teilchen erreichen im Ruhesystem der jeweiligen Plasmapopulation Werte um gamma = 250. Man kann daraus für zukünftige Untersuchungen mit Hilfe von Particle-in-Cell Codes den Schluss ziehen, dass Rückschlüsse auf das tatsächliche Verhalten beim realen Massenverhältnis von m_p/m_e = 1836.2 nur aus den Simulationen mit m_p/m_e >> 20 gezogen werden können, da die starke Kopplung der leichten und schweren Teilchen bei kleineren Massenverhältnissen die Ergebnisse sehr stark beeinflusst. Es wurde anhand der gemessenen Zeitpunkte der Instabilitätsmaxima eine Extrapolation durchgeführt, die zeigt, dass die Instabilität beim realen Massenverhältnis etwa bei t = 1400 omega_{pe}^{-1} auftreten würde. Um dies wirklich zu simulieren müsste allerdings mehr als die 1000-fache Anzahl an CPU-Stunden aufgewandt werden. Des weiteren wurde eine Maxwell-Jüttner-Verteilung an die Teilchenverteilungen der einzelnen Simulationen auf dem Höhepunkt der Instabilität gefittet, um sowohl die neue Temperatur des Plasmas als auch die Beschleunigungseffizienz des Prozesses zu berechnen. Die Temperatur erhöht sich demnach durch die Instabilität von etwa 10^8K auf 10^{10} bis 10^{11}K, der Anteil suprathermischer Teilchen beträgt 2 bis 4%. / In this thesis a three-dimensional, fully relativistic and parallelised Particle-in-Cell Code was developed, tested and used for astrophysical purposes. The Code ACRONYM can be used for a variety of different scenarios, it is state-of-the-art in matters of stability and accuracy. After the development the code was used to investigate the influence of the fundamental mass ratio m_p/m_e on particle acceleration by plasma instabilities. This is important, because usually in PiC-simulations the mass ratio used isn't the real one m_p/m_e = 1836.2, because this would take too much CPU-time in order to see what happens to the protons and what is their influence on the lighter particles like electrons and positrons. For this purpose simulations with mass ratios between 1.0 and 200.0 have been performed. They all have in common that periodic boundary conditions were used and that the whole computational domain has been filled with particles that are counterstreaming along the z-direction with gamma approximately 10 each in order to exclude any development of shocks. The resulting main issues are the following: For mass ratios below m_p/m_e approximately 20 the whole instability develops in only one phase, i.e. current filaments surrounded by circular magnetic fields develop and merge together. All particles are accelerated over the whole run, so one can conclude that the different species are still strongly coupled because of the very similar masses of electrons/positrons and the protons and therefore only one instability can arise. For higher mass ratios a distinctive separation of the instability in two phases is observable. First some flux tubes develop and merge until the first phase is over. Afterwards new magnetic fields and flux tubes are arising, where one of them usually is particularly strong compared to the others, i.e. it is surrounded by stronger magnetic fields and holds a much higher particle density. In the context of this split instability, the electrons and positrons are getting accelerated significantly only in the first phase, the much heavier protons gain energy over the whole time. One can therefore conclude for future investigations with PiC codes that informations about the behaviour at the realistic mass ratio of m_p/m_e = 1836.2 can only be gained from the simulations with m_p/m_e >> 20 because of the strong coupling of the light and heavy particles at low mass ratios. An extrapolation to the real mass ratio shows that the peak of the instability would occur approximately seven times later than the runtime of the longest simulation at about t = 1400 omega_{pe}^{-1}, but in order to realize this, at least 1000 times the now used CPU-hours would be necessary. Furthermore the acceleration efficiency for this process was calculated by fitting a Maxwell-Jüttner-Distribution to the particle distribution from the simulations during the peak of the instabilities. The calculated fraction of superthermal particles is in the range of 2 to 4% and the temperatures of the plasma streams rise from 10^8 at the beginning of the simulations to values around 10^10 to 10^11K.
14

Diffusions-Quanten-Monte-Carlo-Simulationen für Vielelektronen-Atome in Neutronensternmagnetfeldern

Bücheler, Steffen. January 2007 (has links)
Stuttgart, Univ., Diss., 2007.
15

Simulationen kosmischer Röntgenquellen

Weth, Christopher. January 2002 (has links)
Tübingen, Univ., Diss., 2002.
16

Im Brennpunkt der Nuklearen Astrophysik: Die Reaktion 12 C(alpha,gamma) 16 O

Fey, Michael, January 2004 (has links)
Stuttgart, Univ., Diss., 2004.
17

On the formation and evolution of galaxies

Springel, Volker. Unknown Date (has links)
University, Diss., 2000--München.
18

Adaptively Refined Large-Eddy Simulations of Galaxy Clusters / Adaptiv verfeinerte Grobstruktursimulationen von Galaxienhaufen

Maier, Andreas January 2008 (has links) (PDF)
It is aim of this work to develop, implement, and apply a new numerical scheme for modeling turbulent, multiphase astrophysical flows such as galaxy cluster cores and star forming regions. The method combines the capabilities of adaptive mesh refinement (AMR) and large-eddy simulations (LES) to capture localized features and to represent unresolved turbulence, respectively; it will be referred to as Fluid mEchanics with Adaptively Refined Large-Eddy SimulationS or FEARLESS. / Ziel dieser Arbeit war, ein neues numerisches Modell zu entwickeln, welches es ermöglicht Grobstruktursimulationen auch mit adaptiven Gittercodes auszuführen, um Turbulenz über große Längenskalenbereiche konsistent zu simulieren.
19

Simulating Star Formation and Turbulence in Models of Isolated Disk Galaxies / Simulation von Sternentstehung und Turbulenz in Modellen von isolierten Scheibengalaxien

Hupp, Markus January 2008 (has links) (PDF)
We model Milky Way like isolated disk galaxies in high resolution three-dimensional hydrodynamical simulations with the adaptive mesh refinement code Enzo. The model galaxies include a dark matter halo and a disk of gas and stars. We use a simple implementation of sink particles to measure and follow collapsing gas, and simulate star formation as well as stellar feedback in some cases. We investigate two largely different realizations of star formation. Firstly, we follow the classical approach to transform cold, dense gas into stars with an fixed efficiency. These kind of simulations are known to suffer from an overestimation of star formation and we observe this behavior as well. Secondly, we use our newly developed FEARLESS approach to combine hydrodynamical simulations with a semi-analytic modeling of unresolved turbulence and use this technique to dynamically determine the star formation rate. The subgrid-scale turbulence regulated star formation simulations point towards largely smaller star formation efficiencies and henceforth more realistic overall star formation rates. More work is necessary to extend this method to account for the observed highly supersonic turbulence in molecular clouds and ultimately use the turbulence regulated algorithm to simulate observed star formation relations. / In dieser Arbeit beschäftigen wir uns mit der Modellierung und Durchführung von hoch aufgelösten dreidimensionalen Simulationen von isolierten Scheibengalaxien, vergleichbar unserer Milchstraße. Wir verwenden dazu den Simulations-Code Enzo, der die Methode der adaptiven Gitterverfeinerung benutzt um die örtliche und zeitliche Auflösung der Simulationen anzupassen. Unsere Galaxienmodelle beinhalten einen Dunkle Materie Halo sowie eine galaktische Scheibe aus Gas und Sternen. Regionen besonders hoher Gasdichte werden durch Teilchen ersetzt, die fortan die Eigenschaften des Gases beziehungsweise der darin entstehenden Sterne beschreiben. Wir untersuchen zwei grundlegend verschiedene Darstellungen von Sternentstehung. Die erste Methode beschreibt die Umwandlung dichten Gases einer Molekülwolke in Sterne mit konstanter Effektivität und führt wie in früheren Simulationen zu einer Überschätzung der Sternentstehungsrate. Die zweite Methode nutzt das von unserer Gruppe neu entwickelte FEARLESS Konzept, um hydrodynamische Simulationen mit analytischen-empirischen Modellen zu verbinden und bessere Aussagen über die in einer Simulation nicht explizit aufgelösten Bereiche treffen zu können. Besonderes Augenmerk gilt in dieser Arbeit dabei der in Molekülwolken beobachteten Turbulenz. Durch die Einbeziehung dieser nicht aufgelösten Effekte sind wir in der Lage eine realistischere Aussage über die Sternentstehungsrate zu treffen. Eine zukünftige Weiterentwicklung dieser von uns entwickelten und umgesetzten Technik kann in Zukunft dafür verwendet werden, die Qualität des durch Turbulenz regulierten Sternentstehungsmodells noch weiter zu steigern.
20

Numerical simulations of neutron star - black hole mergers

Löffler, Frank January 2005 (has links)
Collisions of black holes and neutron stars, named mixed binaries in the following, are interesting because of at least two reasons. Firstly, it is expected that they emit a large amount of energy as gravitational waves, which could be measured by new detectors. The form of those waves is expected to carry information about the internal structure of such systems. Secondly, collisions of such objects are the prime suspects of short gamma ray bursts. The exact mechanism for the energy emission is unknown so far. <br><br> In the past, Newtonian theory of gravitation and modifications to it were often used for numerical simulations of collisions of mixed binary systems. However, near to such objects, the gravitational forces are so strong, that the use of General Relativity is necessary for accurate predictions. <br><br> There are a lot of problems in general relativistic simulations. However, systems of two neutron stars and systems of two black holes have been studies extensively in the past and a lot of those problems have been solved. One of the remaining problems so far has been the use of hydrodynamic on excision boundaries. Inside excision regions, no evolution is carried out. Such regions are often used inside black holes to circumvent instabilities of the numerical methods near the singularity. Methods to handle hydrodynamics at such boundaries have been described and tests are shown in this work. <br><br> One important test and the first application of those methods has been the simulation of a collapsing neutron star to a black hole. The success of these simulations and in particular the performance of the excision methods was an important step towards simulations of mixed binaries. <br><br> Initial data are necessary for every numerical simulation. However, the creation of such initial data for general relativistic situations is in general very complicated. In this work it is shown how to obtain initial data for mixed binary systems using an already existing method for initial data of two black holes. <br><br> These initial data have been used for evolutions of such systems and problems encountered are discussed in this work. One of the problems are instabilities due to different methods, which could be solved by dissipation of appropriate strength. Another problem is the expected drift of the black hole towards the neutron star. It is shown, that this can be solved by using special gauge conditions, which prevent the black hole from moving on the computational grid. <br><br> The methods and simulations shown in this work are only the starting step for a much more detailed study of mixed binary system. Better methods, models and simulations with higher resolution and even better gauge conditions will be focus of future work. <br><br> It is expected that such detailed studies can give information about the emitted gravitational waves, which is important in view of the newly built gravitational wave detectors. In addition, these simulations could give insight into the processes responsible for short gamma ray bursts. / Zusammenstöße eines schwarzen Lochs und eines Neutronensterns, im Folgenden "gemischte Zusammenstöße" genannt, sind aus wenigstens zwei Gründen interessant. Erstens wird erwartet, dass dabei große Mengen Energie als Gravitationswellen freigesetzt werden und diese mit neuen Detektoren gemessen werden können. Die Form dieser Wellen verrät viel über die Beschaffenheit eines solchen Systems und stellt neben elektromagnetischen Wellen eine wichtige Informationsquelle dar. Zweitens sind Zusammenstöße von kompakten Objekten wie Neutronensternen und schwarze Löchern sehr wahrscheinlich die Ursache sogenannter kurzer Gammastrahlungsblitze. Deren genauer Mechanismus für die Umwandlung der gewaltigen Energiemengen, die bei diesen Blitzen ausgesandt werden, ist jedoch bisher unbekannt. <br><br> Computersimulationen von Zusammenstößen eines gemischten Systems wurden bisher oft unter Benutzung der Newtonschen Gravitationstheorie, bzw. Korrekturen dazu, durchgeführt. In der Nähe so kompakte Objekte wie schwarzer Löcher oder Neutronensterne ist jedoch die Gravitationswirkung so stark, dass Näherungen wie die erwähnten Korrekturen der Newtonschen Gravitationstheorie zu ungenau sind. Eine Benutzung der allgemeinen Relativitätstheorie ist daher für dieses Problem unumgänglich. <br><br> Die Probleme allgemein-relativistischer Simulationen sind vielfältig. Jedoch wurden Binärsysteme zweier schwarzer Löcher und zweier Neutronensterne schon eingehend untersucht, und so viele Probleme, die auch Simulationen gemischter Systeme betreffen, gelöst. Eins der bisher ausstehenden Probleme war die Behandlung der Hydrodynamik an Ausschneiderändern; Rändern zu Gebieten, die in der Zeitentwicklung der Simulation ignoriert werden. Solche Ränder werden zum Beispiel innerhalb eines schwarzen Lochs benutzt, um Instabilitäten des Programms in der Nähe der Singularität zu vermeiden. Methoden, solche Ränder zu behandeln wurden in der Arbeit entwickelt, getestet und gezeigt, dass sie verlässlich arbeiten. <br><br> Ein wichtiger Test für diese Methoden, der gleichzeitig der Gewinnung neuer Erkenntnisse diente, war deren Anwendung auf Simulationen von zu schwarzen Löchern kollabierenden, rotierenden Sternen. Der Erfolg, diese Simulationen ohne Probleme mit den erwähnten Methoden durchzuführen, war ein wichtiger Schritt zu Simulationen gemischter Binärsysteme. <br><br> Für Computersimulationen sind Anfangsdaten notwendig, die das gewünschte Problem beschreiben. Die Erstellung solcher Anfangsdaten ist jedoch unter Benutzung der allgemeinen Relativitätstheorie ausser in Spezialfällen sehr komplex. Wir zeigen, wie man einen schon vorhandenen Algorithmus für Anfangsdaten für zwei schwarze Löcher ändern kann, um Anfangsdaten für ein gemischtes Binärsystem zu erhalten. <br><br> Diese Anfangsdaten wurden für Simulationen eines gemischten Binärsystems benutzt. Während dieser Simulationen traten mehrere Probleme auf. Zwei dieser Probleme waren numerische Instabilitäten unterschiedlicher Herkunft. Beide konnten jedoch mit angepasst starker Dissipation (der künstliche Entnahme von hochfrequenter Energie aus dem System) unterdrückt werden. Ein weiteres Problem war die erwartete Bewegung des schwarzen Lochs in Richtung des Neutronensterns. Da ein Teil des Simulationsgebietes innerhalb des schwarzen Lochs ausgeschnitten wird und das verwendete Programm bewegte Ausschneidegebiete nicht behandeln kann, darf sich das schwarze Loch jedoch auf dem Gitter kaum bewegen. Wir haben dieses Problem durch eine an das Problem angepasste Eichbedingung gelöst, die auf Bewegungen des scheinbaren Horizons reagiert und die Position des schwarzen Lochs auf diese Weise nahezu konstant hält. <br><br> Die Methoden und Simulationen dieser Arbeit sind nur der Anfangspunkt einer ausführlichen Studie von Binärsystemen eines schwarzen Lochs und eines Neutronensterns. Bessere Methoden, Modelle und Simulationen mit höherer Auflösung und besser an das System angepassten Koordinaten werden Mittelpunkt zukünftiger Arbeit sein. <br><br> Es wird erwartet, dass solche detailierten Studien Erkenntnisse über die abgestrahlten Gravitationswellen liefern, die gerade in Hinblick auf die neuen Gravitationswellendetektoren wichtig sind. Weiterhin könnten diese Simulationen dabei helfen, die Prozesse, die kurze Gammastrahlungsblitze hervorrufen, und über die im Moment kaum etwas bekannt ist, aufzuklären.

Page generated in 0.0513 seconds