• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 15
  • 5
  • 1
  • Tagged with
  • 49
  • 19
  • 14
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Signatur von Stossfronten in verschmelzenden und aktiven Galaxien. Optische/UV- und Roentgenbeobachtungen / Signatur of Shockfront in merging Systems and AGN. Optical/UV- and X-Ray Observations

Ansarifar , Hamidreza 30 July 2010 (has links)
No description available.
42

Experimente zur Entstehung von Titan-44 in Supernovae

Schmidt, Konrad January 2012 (has links)
In dieser Diplomarbeit wurde das astrophysikalisch interessante Resonanztriplett der Reaktion 40Ca(α,γ)44Ti bei 4,5MeV untersucht. Am 3-MV-Tandetron des Helmholtz-Zentrums Dresden-Rossendorf wurden dafür die Energien von Protonen- und -Strahlen kalibriert, Anregungsfunktionen im Energiebereich der drei Resonanzen aufgenommen, vier CaOTargets aktiviert und deren Struktur mittels der Reaktion 40Ca(p,γ)41Sc überprüft. Im Felsenkeller-Niederniveaumesslabor wurde anschließend die Aktivität der Proben gemessen. Schließlich konnte die Summe der Resonanzstärken bei 4497 und 4510 keV -Energie im Laborsystem zu (12;8 2;3) eV und die Summe der Resonanzstärken des gesamten Tripletts, d.h. zusätzlich bei 4523 keV, zu (12;0 2;0) eV bestimmt werden. Bei der ersten Resonanzstärke konnte die Unsicherheit im Vergleich zur Literatur von 19% auf 18% verbessert werden. Außerdem bieten die Daten der vorliegenden Arbeit die Grundlage, zukünftig die Unsicherheiten noch erheblich weiter zu reduzieren. / In this thesis the astrophysically interesting resonance triplet of the 40Ca(α ,γ)44Ti reaction at 4.5MeV has been studied. For this purpose energies of proton and beams provided by 3MVTandetron at Helmholtz-Zentrum Dresden-Rossendorf have been calibrated. Excitation functions of energy regions near the resonances and in-beam spectra of four different targets have been measured. The 40Ca(p,γ)41Sc reaction has been used to scan the structure of the activated targets. Afterwards their activity has been measured in the underground laboratory Felsenkeller Dresden. Hence the sum of resonance strengths at laboratory energies of 4497 and 4510 keV of (12:8 2:3) eV has been determined as well as the sum of the total triplet strength, including 4523 keV, of (12:0 2:0) eV. In the case of the first resonance, the uncertainty was decreased from 19% to 18 %. Furthermore the results of this work establish a basis for reaching much lower uncertainties in the future.
43

Measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis

Hannaske, Roland 28 April 2016 (has links)
Zwischen 10 und 1000 s nach dem Urknall bildeten sich während der Big Bang Nukleosynthese (BBN) die ersten leichten Elemente aus Protonen und Neutronen. Die primordialen Häufigkeiten dieser Elemente hingen von denWirkungsquerschnitten der beteiligten Kernreaktionen ab. Vergleiche zwischen den Ergebnissen nuklearer Netzwerkrechnungen mit astronomischen Beobachtungen bieten eine einzigartige Möglichkeit, etwas über das Universum zu dieser Zeit zu erfahren. Da es für die p(n,g)d-Reaktion, die eine Schlüsselreaktion der BBN ist, kaum Messungen im relevanten Energiebereich gibt, beruht deren Reaktionsrate in Netzwerkrechnungen auf theoretischen Berechnungen. Darin fließen auch experimentelle Daten der Nukleon-Nukleon-Streuung, des Einfangquerschnitts für thermische Neutronen sowie (nach Anwendung des Prinzips des detaillierten Gleichgewichts) der d(g,n)p-Reaktion mit ein. Diese Reaktion, die Photodissoziation des Deuterons, ist bei BBN-Energien (Tcm = 20–200 keV) ebenfalls kaum vermessen. Die großen experimentelle Unsicherheiten machen Vergleiche mit den präzisen theoretischen Berechnungen schwierig. In den letzten Jahren wurde die d(g,n)p-Reaktion und insbesondere der M1-Anteil des Wirkungsquerschnitts mit quasi-monoenergetischen g-Strahlen aus Laser-Compton-Streuung oder durch Elektrodesintegration untersucht. Üblicherweise verwendete man für Messungen des d(g,n)p-Wirkungsquerschnitts entweder die auf wenige diskrete Energien beschränkte Strahlung des g-Zerfalls oder Bremsstrahlung, für die aber eine genaue Photonenflussbestimmung sowie der Nachweis von einem der Reaktionsprodukte und dessen Energie nötig ist. Da diese Energie im Bereich der BBN relativ gering ist, gab es bisher noch keine absoluten Messung des d(g,n)p-Wirkungsquerschnitts bei Tcm < 5 MeV mit Bremsstrahlung. Das Ziel dieser Dissertation ist eine solche Messung mit einer Unsicherheit von 5 % im für die BBN relevanten Energiebereich und darüber hinaus bis Tcm ~ 2,5 MeV unter Verwendung gepulster Bremsstrahlung an der Strahlungsquelle ELBE. Dieser supraleitende Elektronenbeschleuniger befindet sich am Helmholtz-Zentrum Dresden-Rossendorf und stellte einen Elektronenstrahl hoher Intensität bereit. Die kinetische Elektronenenergie von 5 MeV wurde mit einem Browne-Buechner-Spektrometer präzise gemessen. Die Energieverteilung der in einer Niob-Folie erzeugten Bremsstrahlungsphotonen wurde berechnet. Die Photonenflussbestimmung nutzte die Kernresonanzstreuung an 27Al, das sich mit deuteriertem Polyethylen in einem mehrschichtigen Target befand. Die 27Al-Abregungen wurden mit abgeschirmten, hochreinen Germanium-Detektoren nachgewiesen, deren Effektivität mit GEANT4 simuliert und durch Quellmessungen normiert wurde. Die Messung der Energie der Neutronen aus der d(g,n)p-Reaktion erfolgte mittels deren Flugzeit in Plastikszintillatoren, die an zwei Seiten von Photoelektronenvervielfachern mit hoher Verstärkung ausgelesen wurden. Die Nachweiseffektivität dieser Detektoren wurde in einem eigenen Experiment in den Referenz-Neutronenfeldern der PTB Braunschweig kalibriert. Die Nachweisschwelle lag bei etwa 10 keV kinetischer Neutronenenergie.Wegen der guten Zeitauflösung der Neutronendetektoren und des ELBE-Beschleunigers genügte eine Flugstrecke von nur 1 m. Die Energieauflösung betrug im d(g,n)p-Experiment 1–2 %. Leider gingen viele Neutronen bereits durch Streuung in dem großen Target verloren oder sie wurden erst durch Teile des kompakten Experimentaufbaus in die Detektoren gestreut. Beide Effekte wurden mit Hilfe von FLUKA simuliert um einen Korrekturfaktor zu bestimmen, der aber bei niedrigen Energien relativ groß war. Der d(g,n)p-Wirkungsquerschnitts wurde daher nur im Bereich 0.7 MeV < Tcm < 2.5 MeV bestimmt. Die Ergebnisse stimmen mit anderen Messungen, Daten-Evaluierungen sowie theoretischen Rechnungen überein. Die Gesamtunsicherheit beträgt circa 6.5 % und kommt zu fast gleichen Teilen von den statistischen und systematischen Unsicherheiten. Die statistische Unsicherheit könnte durch eine längere FLUKA Simulation noch von 3–5 % auf 1 % verringert werden. Die systematische Unsicherheit von 4.5 % ist vorrangig auf die Photonenflussbestimmung, die Neutronen-Nachweiseffektivität und die Target-Zusammensetzung zurückzuführen.
44

Precise nuclear physics for the Sun

Bemmerer, Daniel 25 June 2012 (has links)
For many centuries, the study of the Sun has been an important testbed for understanding stars that are further away. One of the first astronomical observations Galileo Galilei made in 1612 with the newly invented telescope concerned the sunspots, and in 1814, Joseph von Fraunhofer employed his new spectroscope to discover the absorption lines in the solar spectrum that are now named after him. Even though more refined and new modes of observation are now available than in the days of Galileo and Fraunhofer, the study of the Sun is still high on the agenda of contemporary science, due to three guiding interests. The first is connected to the ages-old human striving to understand the structure of the larger world surrounding us. Modern telescopes, some of them even based outside the Earth’s atmosphere in space, have succeeded in observing astronomical objects that are billions of light- years away. However, for practical reasons precision data that are important for understanding stars can still only be gained from the Sun. In a sense, the observations of far-away astronomical objects thus call for a more precise study of the closeby, of the Sun, for their interpretation. The second interest stems from the human desire to understand the essence of the world, in particular the elementary particles of which it consists. Large accelerators have been constructed to produce and collide these particles. However, man-made machines can never be as luminous as the Sun when it comes to producing particles. Solar neutrinos have thus served not only as an astronomical tool to understand the Sun’s inner workings, but their behavior on the way from the Sun to the Earth is also being studied with the aim to understand their nature and interactions. The third interest is strictly connected to life on Earth. A multitude of research has shown that even relatively slight changes in the Earth’s climate may strongly affect the living conditions in a number of densely populated areas, mainly near the ocean shore and in arid regions. Thus, great effort is expended on the study of greenhouse gases in the Earth’s atmosphere. Also the Sun, via the solar irradiance and via the effects of the so-called solar wind of magnetic particles on the Earth’s atmosphere, may affect the climate. There is no proof linking solar effects to short-term changes in the Earth’s climate. However, such effects cannot be excluded, either, making it necessary to study the Sun. The experiments summarized in the present work contribute to the present-day study of our Sun by repeating, in the laboratory, some of the nuclear processes that take place in the core of the Sun. They aim to improve the precision of the nuclear cross section data that lay the foundation of the model of the nuclear reactions generating energy and producing neutrinos in the Sun. In order to reach this goal, low-energy nuclear physics experiments are performed. Wherever possible, the data are taken in a low-background, underground environment. There is only one underground accelerator facility in the world, the Laboratory Underground for Nuclear Astro- physics (LUNA) 0.4 MV accelerator in the Gran Sasso laboratory in Italy. Much of the research described here is based on experiments at LUNA. Background and feasibility studies shown here lay the base for future, higher-energy underground accelerators. Finally, it is shown that such a device can even be placed in a shallow-underground facility such as the Dresden Felsenkeller without great loss of sensitivity.
45

Primordial nuclides and low-level counting at Felsenkeller

Turkat, Steffen 14 November 2023 (has links)
Within cosmology, there are two entirely independent pillars which can jointly drive this field towards precision: Astronomical observations of primordial element abundances and the detailed surveying of the cosmic microwave background. However, the comparatively large uncertainty stemming from the nuclear physics input is currently still hindering this effort, i.e. stemming from the 2H(p,γ)3He reaction. An accurate understanding of this reaction is required for precision data on primordial nucleosynthesis and an independent determination of the cosmological baryon density. Elsewhere, our Sun is an exceptional object to study stellar physics in general. While we are now able to measure solar neutrinos live on earth, there is a lack of knowledge regarding theoretical predictions of solar neutrino fluxes due to the limited precision (again) stemming from nuclear reactions, i.e. from the 3He(α,γ)7Be reaction. This thesis sheds light on these two nuclear reactions, which both limit our understanding of the universe. While the investigation of the 2H(p,γ)3He reaction will focus on the determination of its crosssection in the vicinity of the Gamow window for the Big Bang nucleosynthesis, the main aim for the 3He(α,γ)7Be reaction will be a measurement of its γ-ray angular distribution at astrophysically relevant energies. In addition, the installation of an ultra-low background counting setup will be reported which further enables the investigation of the physics of rare events. This is essential for modern nuclear astrophysics, but also relevant for double beta decay physics and the search for dark matter. The presented setup is now the most sensitive in Germany and among the most sensitive ones worldwide. / Innerhalb der Kosmologie gibt es zwei völlig unabhängige Ansätze, die gemeinsam die Präzision in diesem Gebiet weiter vorantreiben können: Astronomische Beobachtungen der primordialen Elementhäufigkeiten und die detaillierte Vermessung des kosmischen Mikrowellenhintergrunds. Dieses Vorhaben wird derzeit allerdings noch durch die vergleichsweise große Unsicherheit des kernphysikalischen Inputs verhindert, vor allem bedingt durch das limitierte Verständnis der 2H(p,γ)3He-Reaktion. Eine präzise Vermessung dieser Reaktion ist sowohl für die Präzisionsdaten zur primordialen Nukleosynthese erforderlich, als auch für die damit einhergehende unabhängige Bestimmung der kosmologischen Baryonendichte. Des Weiteren ist unsere Sonne ein exzellent geeignetes Objekt, um unser theoretisches Verständnis über die Physik von Sternen mit experimentellen Messungen abgleichen zu können. Während wir heutzutage in der Lage sind, solare Neutrinos in Echtzeit auf der Erde messen können, mangelt es noch an der theoretischen Vorhersagekraft von solaren Neutrinoflüssen. Auch hier ist die Präzision (erneut) begrenzt durch das limitierte Verständnis der beteiligten Kernreaktionen, vor allem bedingt durch mangelnde Kenntnis über die 3He(α,γ)7Be-Reaktion. Die vorliegende Arbeit beleuchtet diese zwei Kernreaktionen, die beide unser Verständnis des Universums auf verschiedene Weise einschränken. Während sich die Untersuchung der 2H(p,γ)3He-Reaktion auf die Bestimmung ihres Wirkungsquerschnitts in der Nähe des Gamow-Fensters für die Urknall-Nukleosynthese konzentriert, ist das Hauptanliegen für die 3He(α,γ)7Be-Reaktion eine Messung der Winkelverteilung der dabei emittierten γ-Strahlung bei astrophysikalisch relevanten Energien. Darüber hinaus wird über die Installation eines Messaufbaus zur Untersuchung niedriger Aktivitäten berichtet, das sich durch seine äußerst geringe Untergrundzählrate auszeichnet. Bedingt durch seine hohe Sensitivität kann dieser Aufbau in Zukunft bedeutende Beiträge für die moderne nukleare Astrophysik leisten und ist darüber hinaus beispielsweise auch relevant für die Untersuchung von Doppel-Betazerfällen oder die Suche nach dunkler Materie. Der präsentierte Aufbau ist nun der Sensitivste seiner Art in Deutschland und gehört zu den Sensitivsten weltweit.
46

Measurement of the energy spectrum of the BL Lac object PG1553+113 with the MAGIC telescope in 2005 and 2006

Hengstebeck, Thomas 01 June 2007 (has links)
In dieser Doktorarbeit wurden im Rahmen des MAGIC Experimentes neue Datenanalysemethoden implementiert, die sich insbesondere fuer die Analyse von Ereignissen niedriger Gammastrahlungsenergie eignen. Die Methoden konnten erfolgreich in Monte Carlo Studien getestet und auf Beobachtungsdaten des Krebsnebels und der extragalaktischen Gammastrahlungsquelle PG1553+113 angewandt werden. Diese Methoden reichen von ''image cleaning'' Techniken und der Nutzung neuer Bildparameter bis zu fortgeschrittenen g/h-Separations- und Energieabschaetzungsverfahren. Zum ersten Mal wurden die Vorteile von Klassifikations- und Regressionsbaeumen in der Gamma-Astrophysik ausgenutzt, um existierende klassische Methoden zu verbessern. Die Analyse - getestet an Monte Carlo Daten - bewies ihre Zuverlaessigkeit bei der Untersuchung der Gammastrahlungsemission des Krebsnebels, wobei ein hochsignifikanter Exzess im Energiebereich unterhalb 100 GeV in nur 1.7 h nachgewiesen werden konnte. Die Analyse von Daten des BL Lac Objekts PG1553+113 ergab signifikante Exzesse fuer Beobachtungen in den Jahren 2005 und 2006. Das kombinierte alpha-Histogramm zeigt ein Signal mit einer Signifikanz, die 8 sigma ueberschreitet. Bei der weiteren Analyse konnte ein differentielles Energiespektrum fuer die kombinierten Daten aus den Jahren 2005 und 2006 erstellt werden. Der integrale Fluss oberhalb von 200 GeV wurde wie folgt bestimmt: F(> 200 GeV) = (1.7+-0.3) 10^(-12)/(cm^2 s), der spektrale Index betraegt Gamma = 3.6+-0.3. Dieses Spektrum konnte daraufhin verwendet werden, um die (unbekannte) Rotverschiebung von PG1553+113 auf z / In this thesis new data analysis methods for the MAGIC experiment were implemented, which are especially suited for the investigation of low energy gamma-ray events. They were successfully tested by means of Monte Carlo studies and applied to observational data of the Crab Nebula and of the extragalactic gamma-ray source PG1553+113. These methods extend from image cleaning techniques and the utilization of new image parameters to sophisticated g/h-separation and energy estimation approaches. For the first time in gamma-ray astrophysics the advantages of classification and regression trees were exploited in order to improve existing `classical'' methods. The analysis procedure - tested on Monte Carlo data - was demonstrated to be reliable in the investigation of the Crab Nebula gamma-ray emission yielding a significant excess in the energy range below 100 GeV in only 1.7 h observation time. The analysis of data taken on the BL Lac PG1553+113 yielded significant excesses for both years 2005 and 2006. The combined alpha histogram shows a signal in excess of 8 sigma. In the further analysis a spectrum could be derived for the combined data sets of 2005 and 2006. The integral flux above 200 GeV could be derived as F(> 200 GeV) = (1.7+-0.3) 10^(-12)/(cm^2 s), the power-law index was measured to be Gamma = 3.6+-0.3. This spectrum was used to constrain the redshift z of PG1553+113 with the result z
47

Exploring the formation histories of galaxies - globular clusters and beyond / Sternentstehungsgeschichten von Galaxien - Kugelsternhaufen und mehr

Lilly, Thomas 12 July 2007 (has links)
No description available.
48

Magnetic flux emergence in the solar photosphere / Ausbruch von Magnetfeld auf der Photosphäre der Sonne

Cheung, Chun Ming Mark 27 February 2006 (has links)
No description available.
49

Linienformation in M Klasse Sternen / Line Formation in M-type Stars

Wende, Sebastian 28 October 2010 (has links)
No description available.

Page generated in 0.0408 seconds