• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 79
  • 28
  • 12
  • 9
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 186
  • 186
  • 74
  • 60
  • 37
  • 36
  • 35
  • 34
  • 31
  • 24
  • 23
  • 22
  • 21
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Palladium(II)-Catalyzed Oxidative Carbocyclization : Stereoselective Formation of C–C and C–B Bonds

Jiang, Tuo January 2014 (has links)
Transition metal catalysis has emerged as one of the most versatile methods for the selective formation of carbon–carbon and carbon–heteroatom bonds. In particular, oxidative carbon–carbon bond forming reactions have been widely studied due to their atom economic feature. This thesis has been focused on the development of new palladium(II)-catalyzed carbocyclization reactions under oxidative conditions. The first part of the thesis describes the palladium(II)-catalyzed oxidative carbocyclization-borylation and -arylation of enallenes. In these reactions, the (σ-alkyl)palladium(II) intermediate, which was shown previously to undergo β-hydride elimination, could be trapped in situ by organoboron reagents (B2pin2 and arylboronic acids) to form new carbon–boron and carbon–carbon bonds. Through these two protocols, a range of borylated and arylated carbocycles were obtained as single diastereomers in high yields. The second part deals with a palladium(II)-catalyzed oxidative diarylative carbocyclization of enynes. The reaction was proposed to start with a syn-arylpalladation of an alkyne, followed by insertion of the coordinated alkene. Subsequent arylation afforded a series of valuable diarylated tetrahydrofuran and tetrahydropyran products. The final part of the thesis advances the previously developed palladium(II)-catalyzed oxidative carbocyclization-borylation of enallenes in an enantioselective manner. C2-symmetric chiral phosphoric acids were used as the novel co-catalyst to trigger the enantioselective formation of intramolecular carbon–carbon bonds. By using this chiral anion strategy, a number of enallenes were converted to the borylated carbocycles with high to excellent enantioselectivity. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 4: Manuscript.</p>
102

Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalents

Maksymowicz, Rebecca Marie January 2014 (has links)
The development of new methods for carbon-carbon bond formation is a challenging topic at the heart of organic chemistry. Over the past ten years a number of methods for the catalytic asymmetric 1,4-addition of organometallic reagents such as Grignard, organozinc and organoaluminium reagents have been reported. However these reagents suffer from many limitations, including the need for cryogenic temperatures, which prevent their widespread use. Here we have developed a new asymmetric method: the copper-catalysed enantioselective 1,4-addition of alkylzirconium compounds, generated in situM/em>, from alkenes. A general introduction into the formation of carbon-carbon bonds and catalytic asymmetric 1,4-addition reactions is first given. We then focus our attention on hydrometallation reactions and their current use in the addition of alkenyl and alkyl groups in asymmetric 1,4-addition reactions. In Chapter two, we introduce the development of our methodology. We found that by using copper complex <b>(S,S,S)-A</b>, high enantioselectivities can be achieved (up to 96% ee), in the presence of a broad range of functional groups which are often not compatible with comparable methods using pre-made organometallic reagents. The method gives good enantioselectivity at room temperature, in a wide range of solvents, using readily available alkenes. Chapter three discusses the expansion of our method to the 1,4- and 1,6-addition to complex steroids. Modified conditions were then found to enable the addition to &beta;-substituted enones, to form quaternary centres. This is followed by the successful addition to &alpha;,&beta;-unsaturated lactones, another difficult substrate class. All these results gave excellent selectivity. In summary, we have developed a new reaction which offers an alternative to current methods reported in the literature. This robust reaction can tolerate a variety of functional groups and we hope that this will aid in the synthesis of important molecules.
103

Enantioselektivní reakce katalyzované chiralními heterocyklickými sloučeninami / Enantioselective reactions catalyzed by chiral heterocyclic compounds

Vlašaná, Klára January 2013 (has links)
Novel bis(tetrahydroisoquinoline) N,N'-dioxides 1,2 belong to the group of compounds with axial chirality that act as a Lewis base. These properties make them useful chiral catalysts in reactions such as allylation, opening of epoxides, etc. that exhibit high enantioselectivity. The prepared chiral bis(tetrahydroisoquinoline) N,N'-dioxides (R,Rax,R)-1, (R,Sax,R)-1, (Rax,R)-2 a (Sax,R)-2 were tested as catalysts in enantioselective allylation of variously substituted α,β−unsaturated aldehydes and dienals with allyltrichlorosilane (Scheme 1). All the catalysts exhibited high catalytic activity as well as high asymmetric induction (up to 96% for α,β- unsaturated aldehydes;1 up to 98 % for dienals). Appropriate choice of solvent as a reaction medium3,4 and substitution in α-position in aldehydes were the crucial factors for the successful course of the reaction. The catalytic activity of (R,Rax,R)-1 and (R,Sax,R)-1 was also tested in asymmetric opening of meso-epoxides with tetrachlorosilane (ee up to 69 %) (Scheme 2). N N O O O O 1 N N O O O 2 Scheme 1 Scheme 2 1) Vlašaná, K.; Hrdina, R.; Valterová, I.; Kotora, M. Eur. J. Org. Chem. 2010, 7040. 2) Kadlčíková, A.; Hrdina, R.; Valterová, I.; Kotora, M. Adv. Synth. Catal. 2009, 351,1279. 3) Hrdina, R.; Opekar, F.; Roithová, J.; Kotora, M. Chem. Commun....
104

Underexploited (ipso, ortho) microbial arene dihydroxylation : uses in synthesis & catalysis

Griffen, Julia Anne January 2013 (has links)
This thesis sought to expand upon the synthetic application of the underexploited ipso, ortho diene cis-diol microbial arene oxidation product from benzoic acid. The microbial oxidation of benzoic acid by mutant strains of bacteria to give the ipso, otho diene cis-diol may be considered to be a green and clean method. This biocatalytic route yields large quantities of an enantiopure chiral building block, which is not assessable via traditional synthetic methods. The fermentation product has seen application towards the synthesis of aminocylitols, which have been tested for their biological activity. Attempts to synthesise the fully oxygenated counterparts, cyclitols, were investigated. Expansion of previous work using a bromine substituted derivative led to a range of cross-coupled and iron co-ordinated products. Finally, a range of novel chiral acids and ketones were synthesised and evaluated for their catalytic activity towards asymmetric epoxidation.
105

Nanocatalyseurs hélicoïdaux chiraux à base de polyoxométallates pour les réactions d’oxydation énantiosélectives / Chiral polyoxometalate-based helical nanocatalysts for enantioselective oxidation reactions

Attoui, Mariam 21 December 2018 (has links)
Les matériaux chiraux à base de polyoxométallates (POMs) ont montré un intérêt croissant ces dernières années, à cause de leurs propriétés remarquables et de leurs applications potentielles, notamment dans le domaine de la catalyse. L’objectif de cette thèse était de concevoir une série d’hybrides hélicoïdaux chiraux à base de polyoxométallates (NANOPOM) énantiopurs, pour des applications en catalyse hétérogène d’oxydation. Deux approches ont été utilisées pour préparer ces nouveaux matériaux. La première consiste à immobiliser les unités POM sur des nanohélices et des nanorubans de silice par couplage électrostatique et par adsorption directe du POM sur les nano-objets, car ces structures sont plus stables et moins sensibles à l’environnement extérieur. La deuxième approche consiste à fixer le POM sur des nanorubans et des nanohélices organiques préparés par auto-assemblage d’amphiphile gemini 16-2-16 (L)- ou (D)-tartrate et du POM dans l’eau. La caractérisation de ces hybrides NANOPOM par des techniques de microscopie (TEM, HR-TEM et EDX) et de spectroscopie (RMN 31P, UV-Vis, DRIFT et Raman) a permis de mettre en évidence la structure des hybrides et notamment le greffage du POM. Ces matériaux sont généralement stables, et l’induction de chiralité des supports chiraux sur le POM a été confirmée par dichroïsme circulaire, mettant en évidence l’énantiopureté de ces NANOPOMs. Ces NANOPOMs sont actifs et recyclables pour l’oxydation de sulfures, mais aucune énantiosélectivité significative n’a été observée. Les résultats obtenus durant la thèse sont encourageants et permettent d’envisager de nouveaux systèmes NANOPOMs basés sur l’incorporation du POM dans les structures hélicoïdales lors de la formation du gel, suivi d’une solidification du système organique par une couche de silice, afin d’augmenter la stabilité, propriété indispensable pour les applications en catalyse. / Chiral polyoxometalates (POMs)-based materials have attracted particular attention in recent years due to their remarkable properties and potential application, especially in the field of catalysis. The goal of this thesis is to design a series of enantiopure nanohelical structures based on polyoxometalates (NANOPOM), for their use as heterogeneous oxidation catalysts. Two approaches were used to prepare these new materials. The first one based on the immobilization of POMs on silica nanohelices and nanoribbons by electrostatic and direct adsorption grafting. These inorganic structures increase the stability and make them less sensitive to external environment. The second approach is to include POM units within the structure of organic nanoribbons and nanohelices during self-assembly of 16-2-16 (L)- or (D)-tartrate gemini amphiphile and POM in water. The characterization of these NANOPOM hybrids by using various techniques such as 31P NMR, UV-Vis, DRIFT, Raman, TEM, HR-TEM and EDX was performed and confirms the structure of these materials, especially the grafting of POM to helical supports. These materials are generally stable, and the induction chirality to the POM anion was confirmed by circular dichroism, highlighting the enantiopurity of these NANOPOM materials. The catalytic properties of these POM hybrids have been tested in the oxidation of sulfides. They are active and recoverable catalysts, unfortunately with no significant enantioselectivity observed in the condition used. We expect that new NANOPOM systems in which POM units are introduced within the structure of nanostructure during gel formation, followed by silica transcription will be more stable, an important feature for their use as recoverable catalyst.
106

Recyclage de complexes bis(oxazolines)- cuivre chiraux pour la catalyse asymétrique : hétérogénéisation par interactions non-covalentes / Recycling chiral copper-bis(oxazoline) complexes for asymmetric catalysis thanks to non-covalents interactions

Didier, Dorian 17 October 2011 (has links)
Les ligands de type bis(oxazolines) associés à des sels métalliques ont montré leur efficacité dans de nombreuses réactions de formation de liaisons C-C. L’utilisation de tels complexes chiraux en tant que catalyseurs asymétriques permet l’accès à une large variété de synthons fonctionnalisés énantioenrichis pour la synthèse de composés d’intérêt biologique. Cependant, un taux catalytique important (souvent 10 mol%) est nécessaire à l’obtention de bonnes activités et énantiosélectivités. Il est donc intéressant de pouvoir recycler ces complexes de manière à réduire le coût de leur emploi mais également d’augmenter le turn-over de ces réactions énantiosélectives.La structure des bis(oxazolines) a donc été choisie de manière à permettre le recyclage de catalyseurs par hétérogénéisation. Un nouveau concept a ainsi été mis en place, impliquant la formation de complexes à transfert de charge (CTC) entre un groupement anthracényle et la trinitrofluorénone. La formation de telles interactions non-covalentes permet la précipitation du catalyseur sous forme de CTC en milieu apolaire par ajout de pentane. Ce procédé ayant donné de très bons résultats pour la cycloaddition de Diels-Alder avec des complexes de cuivre, nous l’avons l’appliqué à d’autres transformations stéréosélectives dans le but d’étendre le champ d’application de notre méthode. Nous avons ainsi étudié cette méthode de recyclage pour les réactions de nitroaldolisation, ène-carbonyle et de cyclopropanation, à la fois dans des procédures mono- et multi-substrats mais également dans une procédure multi-réactions. Les rendements et les excès énantiomériques obtenus grâce à ces nouveaux complexes de cuivre chiraux sont analogues aux valeurs observées dans des conditions de catalyse homogène décrites dans la bibliographie. Dans une grande majorité des cas, une excellente stabilité du catalyseur en termes de sélectivité et d’activité est relevée à travers ses différentes réutilisations.La synthèse et l’utilisation de nouveaux supports permettant la formation de CTC ou d’interactions π ont également été réalisées de manière à éviter l’ajout de pentane jusqu’alors nécessaire à la précipitation de notre espèce catalytique. Ce type de catalyseur a pu être mis à l’épreuve dans les mêmes réactions que celles citées ci-dessus, avec des supports modifiés tels que le polystyrène ou la silice, mais également en présence de charbon actif. Cela nous a permis d’obtenir de bons résultats quant à l’efficacité des catalyseurs dans différentes procédures de catalyse hétérogène, avec une bonne conservation des valeurs de rendements et d’énantiosélectivités. / Chiral bis(oxazolines) associated to various metallic salts have been described as very powerful ligands for the catalytic C-C bond formation. The use of these chiral complexes as asymmetric catalysts allows for scalemic preparation of a wide range of functionalized synthons for the preparation of biologically active compounds. However, an important catalytic amount (around 10 mol%) is often needed to obtain high yields and enantioselectivities. Recycling these complexes can be interesting in terms of cost reduction and increase of the turn-over of these enantioselective reactions.These bisoxazolines were designed to allow recycling of the catalyst by heterogeneization thanks to a new methodology involving the formation of charge transfer complexes (CTC). This non-covalent interaction, linking the anthracenyle moiety and the trinitrofluorenone leads to precipitation of the catalytic species as a CTC due to the addition of pentane. This procedure has successfully been applied to the Diels-Alder reaction with copper complexes and we then endeavoured to carry out other transformations in order to broaden the scope of our methodology. We therefore attempted to carry out nitroaldolizations, carbonyle-ene and cyclopropanations reactions, both in mono- and multi-substrates procedures and in an original multi-reaction concept. Yields and enantioselectivities obtained with these new chiral catalysts compared satisfactorily with described homogeneous conditions. In the most cases, the CTC proved to be highly stable over the course of its different reuses.New supports allowing for CTC formation or π interactions have been prepared and tested in order to avoid having to precipitate the catalyst with pentane for recovery. This type of catalyst was subjected to the same, previously mentioned, reactions with modified supports such as polystyrene, silica or charcoal. These modifications made for efficient homogenous catalytical systems, whilst conserving high yields and enantioselectivities.
107

Chiral phosphoric acids and alkaline earth metal phosphates chemistry

Liang, Tao 10 July 2014 (has links)
Asymmetric synthesis and catalysis is one of the leading research areas in chemistry society, for its versatility and efficiency in obtaining chiral molecules that found the vast majority in natural active compounds and synthetic drugs. Developing asymmetric catalytic methodology is at the frontier in both industrial and academic research laboratories. Enantioselective organocatalysis has emerged as a powerful synthetic tool that is complementary to metal-catalyzed transformations. The development of chiral phosphoric acid and metal phosphate as catalysts has been a breakthrough in recent years. Chiral phosphoric acids have been shown to be powerful catalysts in many organic transformations. Moreover, chiral metal phosphates, which formed by simply replacing the proton in phosphoric acid with metals, have introduced new catalytic activations and broaden the scope of phosphoric acids. This thesis details new highly enantioselective chiral phosphoric acid-catalyzed Pinacol rearrangement and robust alkaline phosphates catalytic system, which utilizes novel carbonyl activation. The Pinacol rearrangement has long been known to be difficult to control in terms of regioselectivity and stereoselectivity. The initial studies found that indolyl-diol compounds can be treated with chiral phosphoric acids to afford the Pinacol rearrangement with high regio- and enantioselectivity. Over 16 chiral phosphoric acids were screened, and it was found an H8-BINOL-phosphoric acid variant with 1-naphthyl groups at 3 and 3' position was the excellent catalyst. This asymmetric transformation is tolerant toward variety of substituents both on the indole ring and migrating groups. During the study, it was found that different ways to generate the catalyst had critical effect on this catalytic transformation. Only those phosphoric acids washed with HCl after column chromatography afforded the rearrangement products with high enantioselectivity. And those without treating with HCl were found contaminated by alkaline metals. These "contamination" catalysts were also found active with carbonyl activations. A highly enantioselective catalytic hetero-Diels-Alder reaction of alpha-keto esters has been developed with chiral alkaline metal phosphates. A calcium 1-naphthyl-BINOL phosphate was found to be the optimum catalyst. A large range of alpha-keto esters as well as isatins can be applied in this alkaline phosphates catalytic system with high efficiency and selectivity. The structure of the catalyst is detailed for the first time by X-ray crystal structure analysis. A proposed Transition state model is provided based on the catalyst crystal structure and Raman spectroscopy analysis. This methodology was further developed with an asymmetric Mukaiyama-Michael addition of beta,gamma-unsaturated alpha-keto ester. The best catalyst was found to be a magnesium chiral phosphate. And the transformation was found capable of tolerating a wide variety of beta,gamma-unsaturated alpha-keto esters.
108

Design, Synthesis, Mechanistic Rationalization and Application of Asymmetric Transition-Metal Catalysts

Hedberg, Christian January 2005 (has links)
<p>This thesis describes mechanistic studies, rational ligand design, and synthesis of asymmetric transition metal catalysts. The topics addressed concerned [Papers I-VII]:</p><p>[I] The asymmetric addition of diethyl zinc to <i>N</i>-(diphenylphosphinoyl)benzalimine catalyzed by bicyclic 2-azanorbornyl-3-methanols was studied. An efficient route to both diastereomers of new bicyclic 2-azanorbornyl-3-methanols with an additional chiral center was developed, in the best case 97% ee was obtained with these ligands. The experimental results were rationalized by a computational DFT-study.</p><p>[II] An aza-Diels-Alder reaction of cyclopentadiene with chiral heterocyclic imines derived from (<i>S</i>)-1-phenylethylamine and different heteroaromatic aldehydes was developed. The cycloaddition proved to be highly diastereoselective and offers a very rapid access to possible biologically active compounds and interesting precursors for chiral (<i>P,N</i>)-ligands. </p><p>[III] A convenient and high-yielding method for the preparation of (<i>R</i>)-tolterodine, utilizing a catalytic asymmetric Me-CBS reduction was developed. Highly enantio-enriched (<i>R</i>)-6-methyl-4-phenyl-3,4-dihydrochromen-2-one (94% ee) was recrystallized to yield practically enantiopure material (ee >99%) and converted to (<i>R</i>)-tolterodine in a four-step procedure. </p><p>[IV] The reaction mechanism of the iridium-phosphanooxazoline-catalyzed hydrogenation of unfunctionalized olefins has been studied by means of DFT-calculations (B3LYP) and kinetic experiments. The calculations suggest that the reaction involves an unexpected IrIII-IrV catalytic cycle facilitated by coordination of a second equivalent of dihydrogen. On the basis of the proposed catalytic cycle, calculations were performed on a full system with 88 atoms. These calculations were also used to explain the enantioselectivity displayed by the catalyst.</p><p>[V and VI] A new class of chiral (<i>P,N</i>)-ligands for the Ir-catalyzed asymmetric hydrogenation of aryl alkenes was developed. These new ligands proved to be highly efficient and tolerate a broad range of substrates. The enantiomeric excesses are, so far, the best reported and can be rationalized using the proposed selectivity model.</p><p>[VII] The complex formed between the quincorine-amine, containing both a primary and a quinuclidine amino function, and [Cp*RuCl]<sub>4</sub> catalyzes the hydrogenation of aromatic and aliphatic ketones in up to 90% ee approx. 24-times faster than previously reported Ru-diamine complexes. The reason for the lower but opposite stereoselectivity seen with the quincoridine-amine, as compared to the quincorine-amine, was rationalized by a kinetic and computational study of the mechanism. The theoretical calculations also revealed a significantly lower activation barrier for the alcohol mediated split of dihydrogen, as compared to the non-alchol mediated process. A finding of importance also for the diphosphine/diamine mediated enantioselective hydrogenation of ketones.</p>
109

Hydrosilylation asymétrique de cétones catalysée par des complexes chiraux du cuivre

Mostefaï-Lemaire, Naouël 22 June 2007 (has links)
Au cours de ce travail de recherche, nous nous sommes intéressés à la réaction d'hydrosilylation asymétrique de diverses cétones aromatiques catalysée par des complexes chiraux du cuivre. Un premier système catalytique mis au point à partir du fluorure de cuivre (II) et du ligand (S)-BINAP (1 mol %) a permis d'atteindre 92 % d'excès énantiomérique en alcools chiraux obtenus. L'aspect fondamental de ce procédé réside dans l'effet accélérateur de l'oxygène. Nous avons alors mis au point une méthode de réduction de diverses cétones aromatiques dans des conditions douces et à l'air. Un deuxième système catalytique, plus efficace en termes de réactivité et de sélectivité, mis au point à partir de fluorure de cuivre (I) et de ligands diphosphines chiraux a permis de réduire de façon catalytique et énantiosélective diverses cétones aromatiques. L'effet accélérateur de l'oxygène est nettement plus marqué comparé au système au fluorure de cuivre (II). L'optimisation est réalisée en présence de ligands encombrés de la famille de la MeO-BIPHEP. Une méthode de réduction de cétones aromatiques pratique, douce, efficace, sélective (jusqu'à 95 % e.e.) et avec des taux catalytiques particulièrement intéressants (< 0,05 mol %) est alors proposée. L'étude mécanistique entreprise nous a permis de préciser certaines étapes du cycle catalytique envisagé pour cette réaction et de souligner la complexité de la réaction étudiée. Mots-clés : catalyse asymétrique, hydrosilylation asymétrique, hydrure de cuivre, effet de l'oxygène, étude mécanistique. / During this research work, we have studied the asymmetric hydrosilylation reaction of various aromatic ketones catalysed by chiral copper complexes. The first system, based on copper fluoride (II) and (S)-BINAP as ligand (1 mol %), allowed us to achieve up to 92% e.e. in chiral alcohols. The fundamental aspect of this reaction is based on the accelerating effect of oxygen. A smooth method of various aromatic ketones was therefore established under air atmosphere. A second catalytic system, based on copper fluoride (I) and diphosphine ligands, was developed. This system was found to be more efficient in terms of reactivity and selectivity for the reduction of various aromatic ketones than the first system. An increase in sensitivity to the accelerating effect of the oxygen was observed with this copper (I) system. Some optimisations have shown than hindered ligands such as MeO-BIPEPH furnish up to 95% e.e. in the presence of a very low catalytic loading (< 0,05 mol %). Those conditions allowed the reduction of aromatic ketones in practical, soft, efficient and selective conditions. The mechanistic study enabled us to get a better understanding of the catalytic cycle but also pointed out the complexity of the reaction. Keywords: asymmetric catalysis, asymmetric hydrosilylation, copper hydride, oxygen effect, mechanistic investigation.
110

Asymmetric Catalysis : Ligand Design and Conformational Studies.

Hallman, Kristina January 2001 (has links)
This thesis deals with the design of ligands for efficientasymmetric catalysis and studies of the conformation of theligands in the catalytically active complexes. All ligandsdeveloped contain chiral oxazoline heterocycles. The conformations of hydroxy- and methoxy-substitutedpyridinooxazolines and bis(oxazolines) during Pd-catalysedallylic alkylations were investigated using crystallography,2D-NMR techniques and DFT calculations. A stabilising OH-Pdinteraction was discovered which might explain the differencein reactivity between the hydroxy- and methoxy-containingligands. The conformational change in the ligands due to thisinteraction may explain the different selectivities observed inthe catalytic reaction. Polymer-bound pyridinooxazolines and bis(oxazolines) weresynthesised and employed in Pd-catalysed allylic alkylationswith results similar to those of monomeric analogues;enantioselectivities up to 95% were obtained. One polymer-boundligand could be re-used several times after removal of Pd(0).The polymer-bound bis(oxazoline) was also used in Zn-catalysedDiels-Alder reactions, but the heterogenised catalyst gavelower selectivities than a monomeric analogue. A series of chiral dendron-containing pyridinooxazolines andbis(oxazolines) were synthesised and evaluated in Pd-catalysedallylic alkylations. The dendrons did not seem to have anyinfluence on the selectivity and little influence on the yieldwhen introduced in the pyridinooxazoline ligands. In thebis(oxazoline) series lower generation dendrimers had a postiveon the selectivity, but the selectivity and the activitydecreased with increasing generation. Crown ether-containing ligands were investigated inpalladium-catalysed alkylations. No evidence of a possibleinteraction between the metal in the crown ether and thenucleophile was discovered. A new type of catalyst, an oxazoline-containing palladacyclewas found to be very active in oxidations of secondary alcoholsto the corresponding aldehydes or ketones. The reactions wereperformed with air as the re-oxidant. Therefore, this is anenviromentally friendly oxidation method. <b>Keywords:</b>asymmetric catalysis, chiral ligand,oxazolines, conformational study, allylic substitution,polymer-bound ligands, dendritic ligands, crown ether,oxidations, palladacycle.

Page generated in 0.092 seconds