• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 413
  • 128
  • 102
  • 54
  • 11
  • 8
  • 7
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 866
  • 169
  • 167
  • 142
  • 117
  • 108
  • 101
  • 89
  • 87
  • 85
  • 78
  • 76
  • 74
  • 72
  • 71
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Indice de Maslov : opérateurs d'entrelacement et revêtement universel du groupe symplectique

Guenette, Robert. January 1981 (has links)
No description available.
132

Asymptotic expansion of the expected discounted penalty function in a two-scalestochastic volatility risk model.

Ouoba, Mahamadi January 2014 (has links)
In this Master thesis, we use a singular and regular perturbation theory to derive an analytic approximation formula for the expected discounted penalty function. Our model is an extension of Cramer–Lundberg extended classical model because we consider a more general insurance risk model in which the compound Poisson risk process is perturbed by a Brownian motion multiplied by a stochastic volatility driven by two factors- which have mean reversion models. Moreover, unlike the classical model, our model allows a ruin to be caused either by claims or by surplus’ fluctuation. We compute explicitly the first terms of the asymptotic expansion and we show that they satisfy either an integro-differential equation or a Poisson equation. In addition, we derive the existence and uniqueness conditions of the risk model with two stochastic volatilities factors.
133

When does convergence of asset price processes imply convergence of option prices?

Hubalek, Friedrich, Schachermayer, Walter January 1998 (has links) (PDF)
We consider weak convergence of a sequence of asset price models (Sn) to a limiting asset price model S. A typical case for this situation is the convergence of a sequence of binomial models to the Black-Scholes model, as studied by Cox, Ross, and Rubinstein. We put emphasis on two different aspects of this convergence: firstly we consider convergence with respect to the given "physical" probability measures (Pn) and secondly with respect to the "risk-neutral" measures (Qn) for the asset price processes (Sn). (In the case of non-uniqueness of the risk-neutral measures also the question of the "good choice" of (Qn) arises.) In particular we investigate under which conditions the weak convergence of (Pn) to P implies the weak convergence of (Qn) to Q and thus the convergence of prices of derivative securities. The main theorem of the present paper exhibits an intimate relation of this question with contiguity properties of the sequences of measures (Pn) with respect to (Qn) which in turn is closely connected to asymptotic arbitrage properties of the sequence (Sn) of security price processes. We illustrate these results with general homogeneous binomial and some special trinomial models. (author's abstract) / Series: Report Series SFB "Adaptive Information Systems and Modelling in Economics and Management Science"
134

Essays on optimal tests for parameter instability

Lee, Dong Jin, January 2008 (has links)
Thesis (Ph. D.)--University of California, San Diego, 2008. / Title from first page of PDF file (viewed June 16, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 158-164).
135

Rigorous exponential asymptotics for a nonlinear third order difference equation

Liu, Xing, January 2004 (has links)
Thesis (Ph. D.)--Ohio State University, 2004. / Title from first page of PDF file. Document formatted into pages; contains viii, 140 p.; also includes graphics. Includes bibliographical references (p. 139-140).
136

Asymptotic enumeration via singularity analysis

Lladser, Manuel Eugenio, January 2003 (has links)
Thesis (Ph. D.)--Ohio State University, 2003. / Title from first page of PDF file. Document formatted into pages; contains x, 227 p.; also includes graphics Includes bibliographical references (p. 224-227). Available online via OhioLINK's ETD Center
137

Asymptotic efficiency of the blest type tests of independence /

Wang, Shu. January 1900 (has links)
Thesis (M.SC.) - Carleton University, 2007. / Includes bibliographical references (p. 51-52). Also available in electronic format on the Internet.
138

Weak convergence of stochastic processes in weighted metrics and their applications to contiguous changepoint analysis.

Szyszkowicz, B. (Barbara), Carleton University. Dissertation. Mathematics. January 1992 (has links)
Thesis (Ph. D.)--Carleton University, 1992. / Also available in electronic format on the Internet.
139

Asymptotisches Verhalten von Lösungen stochastischer linearer Differenzengleichungen im Rd

Köhnlein, Dieter. January 1988 (has links)
Thesis (doctoral)--Universität Bonn, 1988. / Includes bibliographical references (p. 99-102).
140

Asymptotic expansions of empirical likelihood in time series.

January 2009 (has links)
Liu, Li. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 41-44). / Abstract also in Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Empirical Likelihood --- p.1 / Chapter 1.2 --- Empirical Likelihood for Dependent Data --- p.4 / Chapter 1.2.1 --- Spectral Method --- p.5 / Chapter 1.2.2 --- Blockwise Method --- p.6 / Chapter 1.3 --- Edgeworth Expansions and Bartlett Correction --- p.9 / Chapter 1.3.1 --- Coverage Errors --- p.10 / Chapter 1.3.2 --- Edgeworth Expansions --- p.11 / Chapter 1.3.3 --- Bartlett Correction --- p.13 / Chapter 2 --- Bartlett Correction for EL --- p.16 / Chapter 2.1 --- Empirical Likelihood in Time Series --- p.16 / Chapter 2.2 --- Stochastic Expansions of EL in Time Series --- p.19 / Chapter 2.3 --- Edgeworth Expansions of EL in Time Series --- p.22 / Chapter 2.3.1 --- Validity of the Formal Edgeworth Expansions --- p.22 / Chapter 2.3.2 --- Cumulant Calculations --- p.24 / Chapter 2.4 --- Main Results --- p.30 / Chapter 3 --- Simulations --- p.32 / Chapter 3.1 --- Confidence Region --- p.33 / Chapter 3.2 --- Coverage Error of Confidence Regions --- p.35 / Chapter 4 --- Conclusion and Future Work --- p.38 / Bibliography --- p.41

Page generated in 0.0336 seconds