111 |
Perturbations singulières pour des EDP linéaires et non linéaires en presence de discontinuitésHamouda, Makram 21 December 2001 (has links) (PDF)
Ma thèse porte sur l'étude des couches limites et de perturbations singulières (\textit{i.e.} des problèmes caractérisés par la présence d'un petit paramètre qui tend vers zéro) dans des conditions plus délicates que d'habitude, à savoir lorsque la solution limite n'est pas régulière. Je considère ainsi deux classes de problèmes réguliers associes à un laplacien et à un bilaplacien, et un problème non linéaire dérivé du problème de Plateau (surfaces minimas), pour lequels la fonction limite possède une singularité (discontinuité simple pour les premiers problèmes, dérivée normale infinie sur certaines parties de la frontière pour le second).\\ La première partie de cette thèse est consacrée à l'étude de deux modèles linéaires singuliers associés à des perturbations singulières pour des EDPs ayant une fonction source singulière. Ce type d'équations fait l'objet de plusieurs applications, par exemple les problèmes de flambement en élasticité, les tourbillons singuliers en mécanique des fluides, le problème de la charge critique pour une poutre ou une plaque élastoplastique, le problème du contrôle automatique de la trajectoire d'un mobile et le problème du bord arrière pour l'écoulement autour d'une aile. De manière classique, la présence d'un petit paramètre dans des équations aux dérivées partielles entraîne, dans certains cas, l'apparition d'une couche limite classique près du bord du domaine pour la solution dite régularisée. Cependant, si on considère en plus une fonction source discontinue (voire une distribution), on constate que de nouvelles couches limites apparaissent à l'intérieur du domaine; l'étude de celles-ci constitue le principal but de cette première partie. Dans la deuxième partie, on s'intéresse à l'étude du problème des surfaces minimales sur une couronne. Pour certaines classes de données au bord, ce problème n'admet pas de solution et sa solution faible dite ``généralisée'' admet une dérivée infinie. On introduit alors une méthode de régularisation elliptique qui entraîne une couche limite près du bord. Le résultat fondamental de cette partie consiste à donner explicitement une approximation pour cette solution régularisée.
|
112 |
Use of mathematical expansions to model crystal growth from the melt under the effect of magnetic fieldsBioul, François 03 January 2007 (has links)
High-quality silicon crystals provide the basis of many industrial technological advances, including computers and telecommunication devices. The increasing size and extremely high quality requirements of silicon wafers have made furnace design and crystal manufacturing a very challenging task. Numerical simulations have become an essential and powerful tool to overcome the difficulties of the experimental approach with a view to understanding the crystal growth process but also to finding an appropriate path to optimize the crystal pulling conditions in industry.</br></br>
This thesis deals with the use of alternating and steady transverse magnetic fields in silicon growth from the melt. The use of magnetic fields represents a powerful tool to damp out turbulence and control the melt flow. This technique can also be used to heat the system. We focus on the numerical modeling of (i) induction heating in the Floating Zone process and of (ii) melt convection under the effect of transverse magnetic fields in the Czochralski process. For each of these topics, our work is subdivided in two parts : firstly mathematical modeling, based on asymptotic or Fourier expansions, and secondly numerical implementation and simulation of the considered processes. </br></br>
First, a theoretical and numerical model of the alternating magnetic field distribution (as generated by induction heating) has been developed by means of an asymptotic expansion technique. Moreover, a new methodology has been developed to calculate the thermal and mechanical effects of alternating magnetic fields on the liquid conductor flow, leading to accurate expressions for the equivalent magnetic heat flux and surface stresses in the 2D and 3D cases. Second, investigation of the effect of a transverse magnetic field on the melt flow in semi-conductor crystal growth has been performed by the simplified FLET method (“Fourier Limited Expansion Technique”.)
|
113 |
Asymptotic behavior of solutions to multidimensional nonisentropic hydrodynamic model for semiconductorsFang, Daoyuan, Xu, Jiang January 2005 (has links)
In this paper, a global existence result of smooth solutions to the multidimen-
sional nonisentropic hydrodynamic model for semiconductors is proved, under the
assumption that the initial data is a perturbation of the stationary solutions for the thermal equilibrium state. The resulting evolutionary solutions converge to the stationary solutions in time asymptotically exponentially fast.
|
114 |
On chemotaxis systems with saturation growthYin, Yang, Hua, Chen January 2007 (has links)
In this paper, we discuss the global existence of solutions for Chemotaxis models with saturation growth. If the coe±cients of the equations are all positive smooth T-periodic functions, then the problem has a positive T-periodic solution, and meanwhile we discuss here the stability problems for the T-periodic solutions.
|
115 |
The capture of a particle into resonance at potential hole with dissipative perturbationKiselev, Oleg, Tarkhanov, Nikolai January 2013 (has links)
We study the capture of a particle into resonance at a potential hole with dissipative perturbation and periodic outside force. The measure of resonance solutions is evaluated. We also derive an asymptotic formula for the parameter range of those solutions which are captured into resonance.
|
116 |
Uses of Bayesian posterior modes in solving complex estimation problems in statisticsLin, Lie-fen 17 March 1992 (has links)
In Bayesian analysis, means are commonly used to
summarize Bayesian posterior distributions. Problems with
a large number of parameters often require numerical
integrations over many dimensions to obtain means. In this
dissertation, posterior modes with respect to appropriate
measures are used to summarize Bayesian posterior
distributions, using the Newton-Raphson method to locate
modes. Further inference of modes relies on the normal
approximation, using asymptotic multivariate normal
distributions to approximate posterior distributions. These
techniques are applied to two statistical estimation
problems.
First, Bayesian sequential dose selection procedures
are developed for Bioassay problems using Ramsey's prior
[28]. Two adaptive designs for Bayesian sequential dose
selection and estimation of the potency curve are given.
The relative efficiency is used to compare the adaptive
methods with other non-Bayesian methods (Spearman-Karber,
up-and-down, and Robbins-Monro) for estimating the ED50 .
Second, posterior distributions of the order of an
autoregressive (AR) model are determined following Robb's
method (1980). Wolfer's sunspot data is used as an example
to compare the estimating results with FPE, AIC, BIC, and
CIC methods. Both Robb's method and the normal
approximation for estimation of the order have full
posterior results. / Graduation date: 1992
|
117 |
Analysis of Asymptotic Solutions for Cusp Problems in CapillarityAoki, Yasunori January 2007 (has links)
The capillary surface $u(x,y)$ near a cusp region satisfies the boundary value problem:
\begin{eqnarray}
\nabla \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=&\kappa u \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,, \label{0.1}\\
\nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\
\nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,, \label{0.3}
\end{eqnarray}
where $\lim_{x\rightarrow 0}f_1(x),f_2(x)=0$, $\lim_{x\rightarrow 0}f'_1(x),f'_2(x)=0$.
It is shown that the capillary surface is unbounded at the cusp and satisfies $u(x,y)=O\left(\frac{1}{f_1(x)-f_2(x)}\right)$, even for types of cusp not investigated previously (e.g. exponential cusps).
By using a tangent cylinder coordinate system, we show that the exact solution $v(x,y)$ of the boundary value problem:
\begin{eqnarray}
\nabla \cdot \frac{\nabla v}{\left|\nabla v \right|}&=&\kappa v \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,,\\
\nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\
\nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,,
\end{eqnarray}
exhibits sixth order asymptotic accuracy to the capillary equations~\eqref{0.1}$-$\eqref{0.3} near a circular cusp.
Finally, we show that the solution is bounded and can be defined to be continuous at a symmetric cusp ($f_1(x)=-f_2(x)$) with the supplementary contact angles ($\gamma_2=\pi-\gamma_1$). Also it is shown that the solution surface is of the order $O\left(f_1(x)\right)$, and moreover, the formal asymptotic series for a symmetric circular cusp region is derived.
|
118 |
Analysis of Asymptotic Solutions for Cusp Problems in CapillarityAoki, Yasunori January 2007 (has links)
The capillary surface $u(x,y)$ near a cusp region satisfies the boundary value problem:
\begin{eqnarray}
\nabla \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=&\kappa u \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,, \label{0.1}\\
\nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\
\nu \cdot \frac{\nabla u}{\sqrt{1+\left|\nabla u \right|^2}}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,, \label{0.3}
\end{eqnarray}
where $\lim_{x\rightarrow 0}f_1(x),f_2(x)=0$, $\lim_{x\rightarrow 0}f'_1(x),f'_2(x)=0$.
It is shown that the capillary surface is unbounded at the cusp and satisfies $u(x,y)=O\left(\frac{1}{f_1(x)-f_2(x)}\right)$, even for types of cusp not investigated previously (e.g. exponential cusps).
By using a tangent cylinder coordinate system, we show that the exact solution $v(x,y)$ of the boundary value problem:
\begin{eqnarray}
\nabla \cdot \frac{\nabla v}{\left|\nabla v \right|}&=&\kappa v \qquad \textrm{in }\left\{(x,y): 0<x,f_2(x)<y<f_1(x)\right\}\,,\\
\nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_1 \qquad \textrm{on } y=f_1(x)\,,\\
\nu \cdot \frac{\nabla v}{\left|\nabla v \right|}&=& \cos \gamma_2 \qquad \textrm{on } y=f_2(x)\,,
\end{eqnarray}
exhibits sixth order asymptotic accuracy to the capillary equations~\eqref{0.1}$-$\eqref{0.3} near a circular cusp.
Finally, we show that the solution is bounded and can be defined to be continuous at a symmetric cusp ($f_1(x)=-f_2(x)$) with the supplementary contact angles ($\gamma_2=\pi-\gamma_1$). Also it is shown that the solution surface is of the order $O\left(f_1(x)\right)$, and moreover, the formal asymptotic series for a symmetric circular cusp region is derived.
|
119 |
Customer allocation policies in a two server network: stability and exact asymptoticsCoombs-Reyes, Jerome D. 01 December 2003 (has links)
No description available.
|
120 |
Dynamic Variational Asymptotic Procedure for Laminated Composite ShellsLee, Chang-Yong 25 June 2007 (has links)
Unlike published shell theories, the main two parts of this thesis are devoted to the asymptotic construction of a refined theory for composite laminated shells valid over a wide range of frequencies and wavelengths. The resulting theory is applicable to shells each layer of which is made of materials with monoclinic symmetry. It enables one to analyze shell dynamic responses within both long-wavelength, low- and high-frequency vibration regimes. It also leads to energy functionals that are both positive definiteness and sufficient simplicity for all wavelengths. This whole procedure was first performed analytically. From the insight gained from the procedure, a finite element version of the analysis was then developed; and a corresponding computer program, DVAPAS, was developed. DVAPAS can obtain the generalized 2-D constitutive law and recover accurately the 3-D results for stress and strain in composite shells. Some independent works will be needed to develop the corresponding 2-D surface analysis associated with the present theory and to continue towards full verification and validation of the present process by comparison with available published works.
|
Page generated in 0.0609 seconds