• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High-frequency statistics for Gaussian processes from a Le Cam perspective

Holtz, Sebastian 04 March 2020 (has links)
Diese Arbeit untersucht Inferenz für Streuungsparameter bedingter Gaußprozesse anhand diskreter verrauschter Beobachtungen in einem Hochfrequenz-Setting. Unser Ziel dabei ist es, eine asymptotische Charakterisierung von effizienter Schätzung in einem allgemeine Gaußschen Rahmen zu finden. Für ein parametrisches Fundamentalmodell wird ein Hájek-Le Cam-Faltungssatz hergeleitet, welcher eine exakte asymptotische untere Schranke für Schätzmethoden liefert. Dazu passende obere Schranken werden konstruiert und die Bedeutung des Satzes wird verdeutlicht anhand zahlreicher Beispiele wie der (fraktionellen) Brownschen Bewegung, dem Ornstein-Uhlenbeck-Prozess oder integrierten Prozessen. Die Herleitung der Effizienzresultate basiert auf asymptotischen Äquivalenzen und kann für verschiedene Verallgemeinerungen des parametrischen Fundamentalmodells verwendet werden. Als eine solche Erweiterung betrachten wir das Schätzen der quadrierten Kovariation eines stetigen Martingals anhand verrauschter asynchroner Beobachtungen, welches ein fundamentales Schätzproblem in der Öknometrie ist. Für dieses Modell erhalten wir einen semi-parametrischen Faltungssatz, welcher bisherige Resultate im Sinne von Multidimensionalität, Asynchronität und Annahmen verallgemeinert. Basierend auf den vorhergehenden Herleitungen entwickeln wir einen statistischen Test für den Hurst-Parameter einer fraktionellen Brownschen Bewegung. Ein Score- und ein Likelihood-Quotienten-Test werden implementiert sowie analysiert und erste empirische Eindrücke vermittelt. / This work studies inference on scaling parameters of a conditionally Gaussian process under discrete noisy observations in a high-frequency regime. Our aim is to find an asymptotic characterisation of efficient estimation for a general Gaussian framework. For a parametric basic case model a Hájek-Le Cam convolution theorem is derived, yielding an exact asymptotic lower bound for estimators. Matching upper bounds are constructed and the importance of the theorem is illustrated by various examples of interest such as the (fractional) Brownian motion, the Ornstein-Uhlenbeck process or integrated processes. The derivation of the efficiency result is based on asymptotic equivalences and can be employed for several generalisations of the parametric basic case model. As such an extension we consider estimation of the quadratic covariation of a continuous martingale from noisy asynchronous observations, which is a fundamental estimation problem in econometrics. For this model, a semi-parametric convolution theorem is obtained which generalises existing results in terms of multidimensionality, asynchronicity and assumptions. Based on the previous derivations, we develop statistical tests on the Hurst parameter of a fractional Brownian motion. A score test and a likelihood ratio type test are implemented as well as analysed and first empirical impressions are given.
2

Estimation Problems Related to Random Matrix Ensembles / Schätzprobleme für Ensembles zufälliger Matrizen

Matić, Rada 06 July 2006 (has links)
No description available.

Page generated in 0.0733 seconds