• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 10
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 124
  • 124
  • 34
  • 31
  • 24
  • 16
  • 15
  • 15
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Predicting the impacts of cloud processing on aerosol properties /

Slater, Daniel. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 96-99).
52

Application of principal component analysis to atmospheric aerosol size distribution measurements /

Chan, Tak Wai. January 2005 (has links)
Thesis (Ph.D.)--York University, 2005. Graduate Programme in Chemistry. / Typescript. Includes bibliographical references (leaves 218-227). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNR11557
53

Effect of atmospheric paticulates on airborne laser scanning for terrain-referenced navigation

Vydhyanathan, Arun. January 2006 (has links)
Thesis (M.S.)--Ohio University, November, 2006. / Title from PDF t.p. Includes bibliographical references.
54

Simulating Aqueous Secondary Organic Aerosol Formation and Cloudwater Chemistry in Gas-Aerosol Model for Mechanism Analysis

Tsui, William Gang January 2020 (has links)
Aerosols are known to have a large, uncertain effect on air quality and climate. Chemical processing of organic material in aqueous aerosols is known to form secondary organic aerosols (SOA), which make up a significant portion of particulate mass in the atmosphere. However, lack of clarity surrounding the importance of each source of SOA to total aerosol mass contributes to the uncertainties in their environmental impact. Disagreements between chemical models and field measurements suggest that some processes are misrepresented or are missing in current models. This work considers three pathways of SOA formation using Gas-Aerosol Model for Mechanism Analysis (GAMMA), a photochemical box model developed by the McNeill group featuring coupled gas phase and detailed aqueous phase aerosol chemistry. Imidazole-2-carboxaldehyde (IC), a light-absorbing organic species, has been observed to contribute to SOA formation as a photosensitizer. Currently, the extent of photosensitized reactions in ambient aerosols remains poorly constrained. Reactive uptake coefficients were determined from experimental studies of IC-containing aerosols and scaled for ambient simulations in GAMMA. Results of remote ambient simulations show that IC is unlikely to be a significant source of SOA largely due to its lack of abundance in atmospheric aerosols. Humic-like substances (HULIS) have also been experimentally shown to catalyze SOA formation through photosensitizer chemistry. We use GAMMA to quantify the uptake kinetics of limonene in these photosensitizer experiments. Ambient GAMMA simulations of this SOA formation pathway show that limonene-HULIS photosensitizer chemistry can contribute up to 65% of total aqueous SOA at pH 4. Further laboratory studies are recommended for this SOA source to assess the need for its inclusion in aerosol models. Chemical processing of organic material in cloudwater is another known source of SOA. We use GAMMA to consider the impact of the coupled effect of processing in both aqueous aerosol and cloudwater on isoprene epoxydiol (IEPOX) SOA. Simulations show that cloudwater at pH 3 – 4 can also be a potentially significant source of IEPOX SOA, largely due to higher water content in cloudwater than in aerosols. Thus, cloud processing may be a significant contributor to IEPOX SOA formation and could account for differences between predicted SOA mass and ambient measurements where mass transfer limitations in aerosol particles can be expected. This work concludes with recommendations for future work in GAMMA. Parameterization of glyoxal reactive uptake could allow for more accurate predictions of glyoxal oxidation product distributions. The inclusion of online thermodynamic calculations of inorganic species in GAMMA can better constrain several multiphase chemical processes, such as the highly pH-dependent uptake of IEPOX and sulfate formation. Updated detailed mechanisms of transition metal ion chemistry would also improve predictions of sulfate formation.
55

Polarimetric Retrievals of Cloud Droplet Number Concentration: Towards a Better Understanding of Aerosol-Cloud Interactions

Sinclair, Kenneth Allan January 2019 (has links)
A longstanding source of uncertainty within the climate system is our understanding of clouds and their response to aerosols. The resulting cloud optical property changes constitute the largest uncertainty in our understanding of 20th century climate change. Central to being able to monitor and better understand the effects aerosols composition, size and concentration have on cloud reflectivity are accurate observations of the cloud droplet number concentration. Cloud droplet number concentrations couple aerosol properties to changes in cloud brightness. In the first portion of this dissertation, I present the development and evaluation of two techniques for observing cloud properties. The first is a new method of observing cloud droplet number concentration that uses polarimetric measurements and requires relatively few assumptions. The theoretical derivation is first presented followed by a method of implementation using NASA’s airborne Research Scanning Polarimeter (RSP). I use data obtained during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). Comparing cloud droplet number concentration retrievals with in situ measurements made by a cloud droplet probe during NAAMES shows strong agreement between measurements over a range of meteorological conditions and cloud types. Multilayered clouds are ubiquitous within Earth’s atmosphere, yet detecting their presence and height has been a longstanding challenge for passive remote sensing instruments. Retrieving the cloud top height is also an important part of the droplet concentration retrieval, and detecting the presence of multilayered clouds supports interpreting results. For this second technique, I present an assessment of RSP cloud top height retrievals, which are based on the concept of parallax. By comparing RSP cloud top height retrievals to the Cloud Physics Lidar (CPL), the technique is found to be capable of determining the presence and heights of up to three cloud layers, which is innovative for a passive remote sensing instrument. A second element essential to addressing the uncertainty in cloud’s response to aerosols is to better understand processes and drivers of cloud properties. Air-campaign studies offer opportunities to study high temporal and spatial resolution measurements that are needed to better understand the complex processes between aerosols, clouds and meteorological properties. My final investigation uses the two developed cloud property retrievals, in conjunction with other in situ and remotely sensed data, to undertake a broad investigation quantifying connections observed between aerosols, clouds and meteorology. I find a well- defined link between cloud microphysical property changes and marine biogenic aerosol concentrations. Changes in cloud properties are consistent with the Twomey effect, whereby an increase in cloud condensation nuclei is associated with increases in droplet concentrations and decreased droplet sizes. I also observe complex, non-linear secondary effects of aerosols on clouds such as cloud thinning and decreased droplet distribution width. I conclude this study by integrating my findings and discussing plausible linkages between aerosol, cloud and meteorological properties within the context of existing concepts.
56

Development of a Nephelometry Camera and Humidity Controlled Cavity Ring-Down Transmissometer for the Measurement of Aerosol Optical Properties

Radney, James Gregory 01 January 2012 (has links)
A Nephelometry camera (NephCam) and Humidity Controlled Cavity Ring-Down Transmissometer (HC-CRDT) were developed for the determination of aerosol optical properties. The NephCams use a reciprocal geometry relative to an integrating nephelometer; a diode laser illuminates a scattering volume orthogonal to a charge coupled device (CCD). The use of a CCD allows for measurement of aerosol scattering in 2 dimensions; scattering coefficients and size information can be extracted. The NephCam's optics were characterized during a set of imaging experiments to optimize the images collected by the camera. An aperture setting of 1.6 was chosen because it allowed for the most light intensity to reach the CCD - albeit with significant vignetting - and also had a constant modular transfer function (MTF) across the image; approximately 0.3. While this MTF value is approaching the minimum usable MTF of 0.2, other aperture settings did not exhibit constant MTF. While the effects of vignetting can be corrected in image post processing, the effects of non-constant MTF cannot. An optical response model was constructed to simulate images collected by the NephCams as a function of particle type and size. Good agreement between modeled and measured images was observed after the effects of contrast on image shape were considered. The image shapes generated by the model also pointed towards the use of polynomial calibration for particle sizes less than 400 nm as a result of multiple charge-to-size effects present from the sizing mechanism of the differential mobility analyzer. Initial calibration of the NephCams using size-selected dry Ammonium sulfate (AS) showed that calibration slopes are a function of particle size which is also in agreement with the model. Calibration slopes decreased as particle size increased to 400 nm; after 400 nm calibration slope oscillated around a common value. This effect is directly related to the forward shift of scattered intensity as particles grow in size and the collection efficiency of the NephCam as particle size increases. The single scattering albedo (SSA) of Nigrosin was calculated using the NephCam; extinction was measured by the HC-CRDT. Good agreement between the SSA and size was noticed for larger particle sizes; particles smaller than 200 nm in diameter over-measured the SSA of Nigrosin because of the multiple charge-to-size effect. In this size regime, light scattering by particles increases much more quickly than absorption; the presence of larger particles causes scattering to be artificially high. The HC-CRDT is a 4 channel, 3 wavelength instrument capable of measuring the extinction coefficients of aerosols at high (> 80%), low (< 10%) and ambient relative humidity. Extinction coefficients as a function of RH were determined for AS, NaNO3, NaCl, and Nigrosin; these particles represent surrogates of the strongly scattering ionic salts and black carbon, respectively. A model was developed to calculate the changes in refractive index and extinction coefficients of these water soluble particles as a function of RH; these particle types were chosen because core-shell morphologies could be avoided. Volume mixing, Maxwell-Garnett and partial molar refraction mixing rules were used to calculate effective refractive indices as a function of water uptake. Particle growth was calculated based upon the Kelvin equation. Measured and modeled results of f(RH) - relative change in extinction between high or ambient RH and dry RH - agree well for all particle types except Nigrosin. This disagreement is thought to stem directly from an incomplete parameter set for Nigrosin; growth parameters were assumed to be identical to NaNO3, density assumed to be 1 g/mL and molecular weight 202 g/mole, which may not be true in reality (different suppliers of Nigrosin quote different molecular weights). The NephCam was not used during these experiments, so the addition of a scattering measurement to better characterize the growth by Nigrosin is necessary. The f(RH) data for NaNO3 showed excellent agreement between measured and modeled data; however particle size information collected by an SMPS does not agree with the theory. This stems from the fact that NaNO3 does not show prompt deliquescence upon drying; instead an amorphous solid forms which exhibits a kinetically limited loss of water.
57

Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes assessment of related hazard in the North Island /

Grunewald, Uwe. January 2007 (has links)
Thesis (Ph. D.)--University of Canterbury, 2007. / Title from PDF title page (viewed on Feb. 23, 2008). Includes bibliographical references (p. 239-253).
58

Impacts of anthropogenic aerosols on regional climate: extreme events, stagnation, and the United States warming hole

Mascioli, Nora Rose January 2018 (has links)
Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the “all forcing” simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The temperature response pattern in AER and GHG is characterized by strong responses over the western U.S. and weak or opposite signed responses over the southeast U.S., raising the question of whether the observed U.S. “warming hole” could have a forced component. To address this question, I systematically examine observed seasonal temperature trends over all time periods of at least 10 years during 1901-2015. In the northeast and southern U.S., significant summertime cooling occurs from the early 1950s to the mid 1970s, which I partially attribute to increasing anthropogenic aerosol emissions (median fraction of the observed temperature trends explained is 0.69 and 0.17, respectively). In winter, the northeast and southern U.S. cool significantly from the early 1950s to the early 1990s, which I attribute to long-term phase changes in the North Atlantic Oscillation and the Pacific Decadal Oscillation. Rather than being a single phenomenon stemming from a single cause, both the warming hole and its dominant drivers vary by season, region, and time period. Finally, I examine historical and projected future changes in atmospheric stagnation. Stagnation, which is characterized by weak winds and an absence of precipitation, is a meteorological contributor to heat waves, extreme pollution, and drought. Using CM3, I show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds produce significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US increases the number of stagnant summer days. Outside of the U.S., significant drying over eastern China in response to rising aerosol emissions contributed to increased stagnation during 1860-2005. Additionally, this region was found to be particularly sensitive to changes in local aerosol emissions, indicating that decreasing Chinese emissions in efforts to improve air quality will also decrease stagnation. In Europe, I find a dipole response pattern during the historical period wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. In the future, declining aerosol emissions will likely lead to a reversal of the historical stagnation trends, with increasing greenhouse gases again playing a secondary role. Aerosols have a significant effect on a number of societally important extreme events, including heat waves, intense rainfall events, drought, and stagnation. Further, uncertainty in the strength of aerosol masking of historical greenhouse gas forcing is a significant source of spread in future climate projections. Quantifying these aerosol effects is therefore critical for our ability to accurately project and prepare for future changes in extreme events.
59

The Impact of Organic Aerosol Volatility on Particle Microphysics and Global Climate

Gao, Yuchao January 2019 (has links)
Atmospheric aerosols are tiny particles suspended in the atmosphere. They affect global air quality, public health and climate (Boucher et al., 2013; Myhre et al., 2013; Seinfeld and Pandis, 2016), thus playing a key role in the Earth system. However, due to the complexity of aerosol processes and climate change feedbacks, our understanding of aerosols in a changing world is still limited (Boucher et al., 2013). To understand the impact of organic aerosol volatility on particle microphysics and global climate, I developed a new aerosol microphysics scheme, MATRIX-VBS, and its evaluation and application are presented in this dissertation. MATRIX-VBS couples the volatility-basis set (VBS, Donahue et al., 2006) framework with the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state, Bauer et al., 2008) that resolves aerosol mass and number concentrations, size, and mixing state. With the inclusion of organic partitioning and photochemical aging of semi-volatile organic aerosols, aerosols are able to grow via organic condensation, a process previously not available in the original model MATRIX, where organic aerosols were treated as nonvolatile. Both MATRIX and MATRIX-VBS can be used as stand-alone box models or within a global model. After the development of MATRIX-VBS in the box model framework, both model’s simulations were performed and assessed on the box and global scales. On the box model scale, idealized experiments were designed to simulate different environments, clean, polluted, urban, and rural. I investigated the evolution of organic aerosol mass concentration and volatility distribution among gas and aerosol phases, and results show that semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range and stay in the particle phase in the low volatility range. I also concluded that the volatility distribution of organics relies on emission, oxidation, and temperature, and the inclusion of organic aerosol volatility changes aerosol mixing state. Comparing against parallel simulations with the original model MATRIX, which treats organic aerosols as nonvolatile, I assessed the effect of gas-particle partitioning and photochemical aging of semi-volatile organics on particle growth, composition, size distribution and mixing state. Results also show that the new model produces different mixing states, increased number concentrations and decreased aerosol sizes for organic-containing aerosol populations. Monte-Carlo type experiments were performed and they offered a more in-depth look at the impact of organic aerosol volatility on activated number concentration, which is the number concentration of aerosols that are activated but has not yet formed into a cloud droplet. By testing multiple parameters such as aerosol composition, mass concentration and number concentration, as well as particle size, I examined the impact of partitioning organic aerosols on activated aerosol number concentration. I found that the new model MATRIX-VBS produces fewer activated particles compared to the original model MATRIX, except in environments with low cloud updrafts, in clean regions at above freezing temperatures, and in polluted areas at high temperature (310K) and extremely low humidity conditions. I concluded that such change is caused by the differences in aerosol number concentration and size between the two models, which would determine how many particles could activate. On the global scale, MATRIX-VBS was implemented in the NASA GISS ModelE Earth systems model. I assessed and evaluated the new model by comparing aerosol mass and number concentrations, activated cloud number concentration, and AOD against output from the original MATRIX model. Further, I evaluate the two models against observations of organic aerosol mass concentration from the aircraft campaign ATom (Atmospheric Tomography Mission), and aerosol optical depth from ground measurement stations from AERONET (Aerosol Robotic Network) as well as satellite retrievals from MODIS (MODerate resolution Imaging Spectroradiometer) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations). Results show that organics in MATRIX-VBS experience more distant long-range transport, and their mass concentration increase aloft and decrease at the surface as compared to those in MATRIX. There are still underestimations in the vertical profiles of mass concentration in both models, especially in the high latitudes in the Northern Hemisphere and South Pacific Ocean basin, possibly due to the application of universal distribution of mass-based emission factors among different volatilities that perhaps is not realistic in all climate zones, thus affecting organic aerosol lifetime and transport. Just as the box model results, there are more particles and generally more activated ones (except for rare cases such as the highly polluted Eastern China) in MATRIX-VBS than in MATRIX. As for AOD comparisons, MATRIX-VBS have generally lower AOD than MATRIX, which can be due to smaller aerosols and different aerosol composition in the new model, which is also underestimating biomass burning in the Amazon and Congo basins. Compared to satellite retrievals from MODIS and ground measurements from AERONET, both models overestimate aerosol optical depth over anthropogenic polluted regions and biomass regions such as central Africa. Overall, both models also underestimate AOD as compared to AERONET in the winter (DJF), whereas they generally overestimate or estimate it well in other seasons. Even though during its initial evaluation, MATRIX-VBS does not seem to have improved from MATRIX on the global scale in representing the real world, it made the first key step in improving our understanding of organic aerosols on the process level. Changes in mass, number concentration, size distribution, and mixing state (composition) have great implications and impact on climate. Further studies are needed in examining and improving factors linked to the new representation of semi-volatiles in an aerosol microphysics model, including but not limited to the treatment of mass-based emission factor distribution among different organic volatilities and the size distribution of tiny organic particles that have evaporated but not completely. Challenges in evaluations of organic aerosol against measurements remain in that remote regions of significant interest lack available measurements, and additional field campaigns will be important for us to better understand real world conditions and shed light on model performance.
60

Toward the Complete Characterization of Atmospheric Organic Particulate Matter: Derivatization and Two-Dimensional Comprehensive Gas Chromatography/Time of Flight Mass Spectrometry as a Method for the Determination of Carboxylic Acids

Boris, Alexandra Jeanne 01 January 2012 (has links)
Understanding the composition of atmospheric organic particulate matter (OPM) is essential for predicting its effects on climate, air quality, and health. However, the polar oxygenated fraction (PO-OPM), which includes a significant mass contribution from carboxylic acids, is difficult to speciate and quantitatively determine by current analytical methods such as gas chromatography-mass spectrometry (GC-MS). The method of chemical derivatization and two-dimensional GC with time of flight MS (GC×GC/TOF-MS) was examined in this study for its efficacy in: 1) quantifying a high percentage of the total organic carbon (TOC) mass of a sample containing PO-OPM; 2) quantitatively determining PO-OPM components including carboxylic acids at atmospherically relevant concentrations; and 3) tentatively identifying PO-OPM components. Two derivatization reagent systems were used in this study: BF₃/butanol for the butylation of carboxylic acids, aldehydes, and acidic ketones, and BSTFA for the trimethylsilylation (TMS) of carboxylic acids and alcohols. Three α-pinene ozonolysis OPM filter samples and a set of background filter samples were collected by collaborators in a University of California, Riverside environmental chamber. Derivatization/GC×GC TOF-MS was used to tentatively identify some previously unidentified α-pinene ozonolysis products, and also to show the characteristics of all oxidation products determined. Derivatization efficiencies as measured were 40-70% for most butyl derivatives, and 50-58% for most trimethylsilyl derivatives. A thermal optical method was used to measure the TOC on each filter, and a value of the quantifiable TOC mass using a gas chromatograph was calculated for each sample using GC×GC separation and the mass-sensitive response of a flame ionization detector (FID). The TOC quantified using TMS and GC×GC-FID (TMS/TOCGC×GC FID) accounted for 15-23% of the TOC measured by the thermal-optical method. Using TMS and GC×GC/TOF-MS, 8.85% of the thermal optical TOC was measured and 48.2% of the TMS/TOCGC×GC-FID was semi-quantified using a surrogate standard. The carboxylic acids tentatively identified using TMS and GC×GC/TOF-MS accounted for 8.28% of the TOC measured by thermal optical means. GC×GC TOF-MS chromatograms of derivatized analytes showed reduced peak tailing due in part to the lesser interactions of the derivatized analytes with the stationary phase of the chromatography column as compared to the chromatograms of underivatized samples. The improved peak shape made possible the greater separation, quantification, and identification of high polarity analytes. Limits of detection using derivatization and GC×GC/TOF-MS were μL injected for a series of C2-C6 di-acids, cis-pinonic acid, and dodecanoic acid using both butylation and TMS. Derivatization with GC×GC/TOF-MS was therefore effective for determining polar oxygenated compounds at low concentrations, for determining specific oxidation products not previously identified in OPM, and also for characterizing the probable functional groups and structures of α-pinene ozonolysis products.

Page generated in 0.096 seconds