191 |
Dynamique quantique par une méthode de paquets d'ondes. Etude des collisions électron-hydrogène et atome-dihydrogèneMouret, Liza 18 November 2002 (has links) (PDF)
La thèse porte sur le développement de méthodes numériques pour résoudre l'équation de Schrödinger dépendante du temps. Nous nous sommes d'abord intéressés à la collision électron-hydrogène. L'originalité de la méthode repose sur l'utilisation d'une grille radiale à pas variable, définie par interpolation de Schwartz à l'aide d'une fonction de référence coulombienne. Cette grille permet de reproduire un grand nombre d'états liés de l'atome d'hydrogène ainsi que les éléments de matrice de divers opérateurs à la précision numérique de l'ordinateur. La propagation temporelle est effectuée par un algorithme Split-Operator. L'efficacité de la méthode permet de propager la fonction d'onde sur de très grandes distances et les calculs sont réalisés pour toutes les ondes partielles. Les sections efficaces d'excitation et d'ionisation obtenues sont en excellent accord avec les meilleurs résultats expérimentaux et théoriques. Nous avons ensuite adapté la méthode et la chaîne de programmes associée à l'étude des collisions réactives atome-dihydrogène. Le paquet d'ondes est décrit en coordonnées de Jacobi des produits, à l'aide d'une grille régulière pour les coordonnées radiales et d'un développement sur des polynômes de Legendre pour la partie angulaire (onde partielle S). L'analyse est réalisée par transformation de Fourier temps-énergie et fournit, en un seul calcul, les résultats sur toute la gamme d'énergie couverte par le paquet d'ondes initial. La méthode a d'abord été testée sur la réaction quasi-directe (F,H2) et ensuite appliquée à la réaction indirecte (C(1D),H2). Les probabilités de réaction d'état à état sont en très bon accord avec celles obtenues par une approche indépendante du temps. En particulier, pour la collision (C(1D),H2), la structure extrêmement résonante de ces probabilités est bien reproduite.
|
192 |
Contrôle Quantique et Protection de la Cohérence par effet Zénon, Applications à l'Informatique QuantiqueBrion, Etienne 26 November 2004 (has links) (PDF)
Le contrôle quantique constitue un enjeu majeur de la Physique contemporaine. Après un bref tour d'horizon du domaine, nous présentons une méthode, appelée contrôle non holonôme, qui permet d'imposer à système quantique quelconque une évolution unitaire arbitrairement choisie. Dans le contexte de l'Informatique Quantique, cette technique peut être utilisée pour réaliser n'importe quelle porte quantique : à titre d'exemple, nous montrons comment appliquer une porte CNOT à un système de deux atomes de Césium froids en interaction.<br />L'interaction de l'ordinateur avec son environnement risque de compromettre sa fiabilité. Le développement récent de la correction d'erreurs quantiques, inspirée des techniques classiques, suggère néanmoins que ce danger peut être évité. Après une présentation succincte du cadre général de la correction d'erreurs, nous proposons une méthode de protection de l'information fondée sur l'effet Zénon. Cette méthode est ensuite appliquée à un atome de Rubidium.
|
193 |
VERS LE PIEGEAGE D'ATOMES DE RYDBERG CIRCULAIRESHyafil, Philippe 18 April 2005 (has links) (PDF)
Le contrôle de tous les degrés de liberté d'un système simple est un objectif intéressant tant sur le plan fondamental qu'au niveau des applications, à l'information quantique par exemple. Nous avons<br />entrepris la construction d'un dispositif expérimental visant à piéger des atomes de Rydberg circulaires au voisinage d'éléments micro-fabriqués en surface d'une puce. La source primaire de Rubidium est un jet atomique vertical fournissant un flux d'atomes<br />lents. Nous démontrons la possibilité de réaliser la séquence expérimentale suivante. Les atomes sont tout d'abord recapturés à l'intérieur d'un cryostat à Hélium pompé au sein duquel a lieu la suite des manipulations. L'utilisation de techniques de<br />micro-piégeage atomique à la surface d'une puce permet ensuite la préparation d'un nuage froid et dense de Rubidium. Après un processus d'excitation composé de plusieurs échelons lasers et radiofréquences on obtient un atome de Rydberg circulaire unique grâce au phénomène de blocage dipolaire. Cet atome est finalement confiné dans un piège électrique dynamique tirant parti de l'extrême<br />polarisabilité des états atomiques utilisés. Une technique « d'habillage micro-onde » réduit la différence de polarisabilité entre deux niveaux donnés, autorisant ainsi le maintien d'une<br />cohérence quantique sur un temps de l'ordre de la seconde. Le temps de vie atomique est également prolongé grâce à l'inhibition de l'émission spontanée due à la proximité de surfaces métalliques. En<br />dernier lieu, la mesure de l'état atomique final après interaction est effectuée en détectant l'électron d'ionisation grâce à un compteur supraconducteur.
|
194 |
Mesures de champs au niveau du photon par interférométrie atomiqueNussenzveig, Paulo 01 July 1994 (has links) (PDF)
Une transition entre deux niveaux voisins d'un atome de Rydberg et une cavité micro-onde de très haut facteur de qualité constituent un excellent outil pour la recherche sur les interactions matière- rayonnement au niveau le plus fondamental. La simplicité du système (deux niveaux atomiques couplés à un seul mode du champ) permet un traitement analytique complet de la plupart des phénomènes. Dans ce mémoire nous étudions les effets dispersifs de l'interaction non-résonnante entre atomes et cavité. Nous avons mesuré la variation linéaire des déplacements des niveaux d'énergie atomiques avec le nombre moyen de photons dans la cavité. Des déplacements dus à une intensité moyenne inférieure au photon unique ont été observés. En l'absence de champ injecté, il a été possible de mesurer le déplacement résiduel d'un des deux niveaux de la transition atomique: un déplacement de Lamb dû à un seul mode du champ. Ces déplacements d'énergie sont mesurés de façon sensible par une méthode interférométrique: la technique des champs oscillants séparés de Ramsey. Des expériences futures, dans une situation de très faible relaxation du champ, sont proposées. Le caractère quantique du champ sera alors dominant et il sera possible de réaliser une mesure nondestructive du nombre de photons: le caractère non-résonnant de l'interaction assure que les atomes ne peuvent ni absorber ni émettre des photons dans la cavité. Les expériences réalisées démontrent la sensibilité de l'appareil et ouvrent la voie à ces mesures non-destructives ainsi qu'à l'étude de systèmes "mésoscopiques" (états "chat de Schrödinger" du champ), à la "frontière" entre les mondes classique et quantique.
|
195 |
Atomes froids et fluctuations quantiquesLambrecht, Astrid 15 May 1995 (has links) (PDF)
Nous avons observé une réduction des fluctuations quantiques d'un faisceau lumineux interagissant avec un milieu non linéaire constitué d'atomes refroidis par laser. Le nuage atomique, produit par un piège magnéto-optique, est placé dans une cavité optique où il interagit avec le faisceau sonde. Quand le piège est coupé, les atomes quittent la zone d'interaction en suivant un mouvement balistique. Cet effet est utilisé pour balayer la cavité sur la résonance. Des mesures du bruit quantique peuvent être effectuées sur ce système bistable pendant un temps de l'ordre de 20-30ms. Une réduction du bruit de 40 ± 10% pour une des quadratures a été mesurée dans ces conditions. Sur le plan théorique, nous avons développé un traitement de la variation du nombre moyen d'atomes dans le faisceau sonde ainsi que des fluctuations de cette variable. De plus, nous avons effectué un traitement complet des fluctuations du faisceau sonde en tenant compte de sa structure spatiale. Une synthèse de ces développements a été utilisée pour modéliser les spectres du bruit expérimentaux. Nous avons trouvé un accord satisfaisant entre les spectres théoriques et les observations expérimentales. Une réduction du bruit a été aussi observée en présence du piège magnéto-optique avec des atomes très faiblement piégés. La meilleure réduction du bruit mesurée dans de telles conditions est de 20 ± 10%.
|
196 |
Etude théorique d'un gaz de Bose atomique ultra-froid :<br /> 1. Diffusion et localisation de la lumière<br /> 2. Condensation de Bose-Einstein en dimensionalité réduiteMandonnet, Emmanuel 13 March 2000 (has links) (PDF)
Première partie : Les effets d'interférences lors des diffusions multiples d'une onde dans un potentiel aléatoire peuvent conduire au phénomène de localisation d'Anderson, ce qui modifie profondément les propriétés de transport. Nous étudions la possibilité d'observer des effets de localisation de la lumière dans un condensat atomique gazeux. Nous voulons déterminer la distribution des temps de sortie d'un photon initialement placé dans un nuage atomique. Pour cela, nous modélisons la dynamique de ce système à l'aide de l'équation pilote qui décrit l'évolution de la matrice densité atomique. Dans l'hypothèse où le mouvement des atomes peut être négligé, l'apparition d'échelles de temps qui varient exponentiellement avec la taille du nuage permet d'obtenir une signature d'un effet de localisation.<br /><br />Deuxième partie : Nous étudions le refroidissement par évaporation d'un jet atomique en vue de l'obtention d'un laser à atomes continu. Pour estimer la longueur du jet permettant d'atteindre le régime de dégénérescence quantique, on développe deux méthodes de résolution de l'équation de Boltzmann : l'une, purement numérique, utilise une simulation Monte-Carlo ; l'autre, essentiellement analytique, repose sur un ansatz de la densité dans l'espace des phases. Nous décrivons alors les principales propriétés de cohérence du faisceau atomique ainsi obtenu en prenant en compte les effets de la statistique quantique et des interactions entre les atomes.
|
197 |
Electrodynamique en cavité : expériences résonnantes en régime de couplage fortBernardot, Frédérick 11 February 1994 (has links) (PDF)
Dans le domaine micro-onde, deux niveaux de Rydberg voisins d'un atome alcalin, d'une part, et le champ électromagnétique confiné dans une cavité supraconductrice de très haute surtension, d'autre part, échangent de manière cohérente un quantum d'énergie lorsqu'ils sont à résonance. Une telle situation est conceptuellement la plus simple dans laquelle le couplage matière-rayonnement se manifeste à l'échelle élémentaire. Ce mémoire présente une mise en évidence expérimentale de cette interaction, dans une situation où l'évolution cohérente atome-champ domine les processus dissipatifs. Le couplage atome-champ est d'abord décrit théoriquement (dans un point de vue classique puis quantique), ainsi que des expériences permettant de le mettre en évidence. Ensuite, une expérience de spectroscopie des premiers états excités du système {atome + cavité} est exposée. Elle a permis d'accéder à la fréquence avec laquelle un échantillon de trois atomes et un mode résonnant du champ échangent leur énergie. Enfin, un nouveau montage expérimental est présenté. Il possède une résolution spectrale très élevée grâce à l'utilisation de la technique du champ oscillant séparé de Ramsey, et doit permettre l'observation, dans le domaine micro-onde, du couplage élémentaire entre un seul atome à deux niveaux et un seul mode du champ électromagnétique, cette observation pouvant se faire aussi bien spectralement que temporellement. La réalisation d'un montage expérimental aussi sensible, et dans lequel les amortissements de l'atome-et de la cavité sont rendus négligeables, ouvre également la voie à des tests subtils de la Mécanique Quantique (mesures sans démolition, chats de Schrödinger, etc.) mettant en jeu une interaction atome-champ non résonnante.
|
198 |
Refroidissement par bandes latérales d'atomes de Césium et quelques applicationsBouchoule, Isabelle 06 October 2000 (has links) (PDF)
Les expériences présentées dans ce mémoire ont été effectuées sur des atomes de Césium piégés dans un réseau lumineux non dissipatif produit par deux faisceaux d'un laser Nd:YAG. Verticalement, les atomes sont confinés dans des micro-puits indépendants au fond de chaque maximum d'intensité et le confinement horizontal est assuré par la forme gaussienne des faisceaux. Le fort confinement vertical nous a permis, en mettant au point un refroidissement optique par bandes latérales, d'accumuler environ 95% des atomes dans l'état fondamental du mouvement dans la direction verticale. A partir de cet état quantique pratiquement pur, nous avons produit d'autres états quantiques et, grâce à une technique d'imagerie en absorption, nous avons visualisé directement leur distribution en vitesse. Tout d'abord, nous avons réalisé le premier état excité du mouvement des atomes dont la distribution en vitesse s'annule en v = 0. Nous avons ensuite réalisé des états non stationnaires du mouvement et visualisé l'évolution temporelle de leur distribution en vitesse. Ainsi, l'évolution d'une superposition des deux premiers niveaux vibrationnels et celle d'états comprimés ont été enregistrées. Les états comprimés sont, comme l'état fondamental, des états d'incertitude minimum (ΔpΔz = \hbar /2) mais leur distribution en impulsion est plus fine que celle de l'état fondamental. Une réduction d'un facteur 4 a été obtenue. En appliquant le refroidissement du mouvement vertical pendant un temps long, grâce au transfert d'énergie du mouvement horizontal au mouvement vertical assuré par les collisions, nous avons refroidi le mouvement dans les trois directions. Nous avons ainsi obtenu une température T ~ 3 µK pour laquelle 80% des atomes sont dans l'état fondamental du mouvement vertical. Enfin, une étude de temps de thermalisation montre que la résonance de diffusion à énergie nulle du Cesium n'est pas affectée par le fort confinement vertical.
|
199 |
Atomes de Rydberg et cavités : observation de la décohérence dans une mesure quantiqueDreyer, Jochen 14 January 1997 (has links) (PDF)
Dans ce mémoire nous présentons l'observation de la décohérence dans une situation simple, modélisant une mesure quantique idéale. Nous exploitons l'interaction entre un champ micro-onde confiné dans une cavité ne contenant que quelques photons et un atome de Rydberg circulaire. Elle crée un état de superposition quantique qui implique simultanément deux états du champ de phases macroscopiquement différentes. La décohérence, i. e. la transformation de la superposition initialement cohérente en un mélange statistique, est observée à l'aide d'un second atome. Celui-ci sonde l'état du champ un certain temps après l'interaction avec le premier atome. Cette étude apporte un élément de réponse expérimental à la question fondamentale que pose la non-existence de superpositions quantiques cohérentes dans le monde macroscopique. Nos résultats sont en très bon accord avec les prédictions théoriques. Ils confirment que le couplage entre un système physique et son environnement se trouve à l'origine de la décohérence.
|
200 |
Dynamique collisionnelle des gaz d'alcalins lourds : du refroidissement évaporatif à la condensation de Bose-EinsteinGuéry-Odelin, David 30 November 1998 (has links) (PDF)
L'étude du régime de dégénérescence quantique pour les gaz dilluées d'alcalins a <br />été rendue possible grâce à l'utilisation du refroidissement évaporatif dans les<br />pièges magnétiques. Cette technique repose sur les collisions élastiques entre atomes<br />froids. Pour étendre cette méthode au cas des atomes de césium 133, nous avons <br />étudié la section efficace de collision élastique de ces atomes. Nous avons mis <br />en évidence une forte variation de cette dernière avec la température, traduisant<br />l'existence d'une résonance à énergie nulle. Nous avons ensuite montré la limitation<br />du gain dans l'espace des phases, due aux collisions inélastiques qui prennent place <br />au sein du gaz. Pour les deux états a priori bien adaptés à une expérience de <br />condensation, l'état foublement polarisé F=m=4 et l'état hyperfin inférieur F=-m=3, nous<br />avons mesuré des taux de collisions inélastiques exceptionnellement élevés en comparaison <br />de ceux des autres alcalins. Dans les deux cas, la dépendance en température de ces taux<br /> a été systématiquement étudiée. Pour l'état hyperfin inférieur, un emballement du refroidissement évaporatif a néanmoins permis de gagner plus de cinq ordres de grandeur dans l'espace des<br />phases, mais les collisions inélastiques ne nous ont pas permis d'atteindre le seuil de <br />condensation de Bose-Einstein. Pour cet état, une forte dépendance en champ magnétique du taux<br />inélastique a de plus été observé. L'expérience a ensuite été adaptée aux atomes de rubidium 87, <br />et a conduit à l'observation de la condensation de Bose-Einstein. La caractérisation du condensat <br />et sa durée de vie sont détaillées dans la thèse.
|
Page generated in 0.0472 seconds