• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 95
  • 64
  • 23
  • 21
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 267
  • 216
  • 190
  • 70
  • 57
  • 44
  • 40
  • 38
  • 35
  • 35
  • 29
  • 27
  • 26
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Effects of Alloy Chemistry on Localized Corrosion of Austenitic Stainless Steels

Sapiro, David O. 01 October 2017 (has links)
This study investigated localized corrosion behavior of austenitic stainless steels under stressed and unstressed conditions, as well as corrosion of metallic thin films. While austenitic stainless steels are widely used in corrosive environments, they are vulnerable to pitting and stress corrosion cracking (SCC), particularly in chloride-containing environments. The corrosion resistance of austenitic stainless steels is closely tied to the alloying elements chromium, nickel, and molybdenum. Polarization curves were measured for five commercially available austenitic stainless steels of varying chromium, nickel, and molybdenum content in 3.5 wt.% and 25 wt.% NaCl solutions. The alloys were also tested in tension at slow strain rates in air and in a chloride environment under different polarization conditions to explore the relationship between the extent of pitting corrosion and SCC over a range of alloy content and environment. The influence of alloy composition on corrosion resistance was found to be consistent with the pitting resistance equivalent number (PREN) under some conditions, but there were also conditions under which the model did not hold for certain commercial alloy compositions. Monotonic loading was used to generate SCC in in 300 series stainless steels, and it was possible to control the failure mode through adjusting environmental and polarization conditions. Metallic thin film systems of thickness 10-200 nm are being investigated for use as corrosion sensors and protective coatings, however the corrosion properties of ferrous thin films have not been widely studied. The effects of film thickness and substrate conductivity were examined using potentiodynamic polarization and scanning vibrating electrode technique (SVET) on iron thin films. Thicker films undergo more corrosion than thinner films in the same environment, though the corrosion mechanism is the same. Conductive substrates encourage general corrosion, similar to that of bulk iron, while insulating substrates supported only localized corrosion.
42

The effect of cold rolling on the susceptibility of austenitic stainless steel to stress corrosion cracking in primary circuit pressurised water reactor environment

Wright, David Marc January 2012 (has links)
The stress corrosion cracking (SCC) of components which are fabricated from austenitic stainless steel has been observed in the primary circuit of pressurised water reactors (PWR). In recent years it has become an increasing concern that cold work can induce susceptibility to SCC in these materials, even when exposed to good-quality flowing coolant. Laboratory studies which were launched in response to this observation have confirmed that SCC susceptibility is enhanced by cold work. The intention of this study is therefore to investigate the link between the effects of cold work on the material and the susceptibility to SCC. The investigation has been conducted on a grade 304 austenitic stainless steel. Characterisation of the microstructure and mechanical properties has been carried out in the annealed condition, and following cold rolling to a reduction in thickness of 20 %. The cold rolled material has then been subjected to SCC tests in simulated PWR primary circuit coolant. Two types of test were utilised: slow strain rate tests (SSRTs) were carried out in order to investigate the initiation of cracks from a smooth surface and constant load tests using pre-cracked specimens were used to investigate the crack propagation behaviour. In both types of test the SCC produced was predominantly intergranular. The SSRTs revealed that the most susceptible grain boundaries separated grains which had dissimilar deformation microstructures (one grain deformed heavily by planar bands, the other more homogenously). It was also observed that initiation could occur on a grain boundary which is adjacent to an annealing twin. In both microstructural configurations the susceptibility is likely to be due to the deformation incompatibility across the failed boundary, possible indicating that shear at the boundary is important for the initiation of cracking. The crack propagation behaviour of the rolled material was particularly anisotropic; regardless of the loading direction (specimens were manufactured to allow loading along the rolling, transverse and normal plate directions) cracking was observed to occur parallel to the rolling-transverse plane. The origin of this behaviour was explored in terms of preferential alignment of the deformation microstructure and the anisotropic mechanical properties of the rolled plate. Limited transgranular cracking was also observed, which occurred along oxidised deformation bands. The results overall indicate that heterogeneous deformation between different regions of the material, and preferential alignment of the deformation microstructure are important with respect to the SCC susceptibility of the rolled material.
43

Corrosion resistance of austenitic stainless steel in acetic acid solution containing bromide ions

Al-Subai, Saud Ghunaim A. January 2011 (has links)
In this research, the corrosion performance of two austenitic stainless steels, namely 316L and 254SMO, in concentrated acetic acid solutions containing bromide ions has been investigated. In this research, the influence of two different electrochemical surface treatments (electropolishing and nitric acid passivation) on the corrosion behaviour of 316L stainless steel immersed in 15.3M HAc with 18.7mM bromide ions at 900°C was examined. Also, attemptswere made to study the performance of three organic inhibitors in the same conditions. Corrosion rates are assessed both by weight loss, and linear polarisation resistance. Interfacial corrosion chemistry is further characterised by open circuit potential and potentiodynamic polarization measurements. Substrate morphology is elucidated with optical microscopy, including 3D surface profiling, and scanning electron microscopy. Also, X-ray photoelectron spectroscopy is employed to gain further insight into the quite differentcorrosion performances of 316L and 254SMO in 15.3M acetic acid with 18.7mM Br ions.It was found that 316L and 254SMO steels have good corrosion resistance and low corrosion rates in 11.9M-HAc-Br-. Increasing acid concentration to 15.3 M led to a dramatic increase in corrosion rate of 316L with clear evidence of uniform and pitting corrosion proceeding simultaneously. Notably, the step increase in OCP for 316L steel and 254SMO during immersion in 15.3M-HAc-Br- solution indicates sudden changes in corrosion activity of the steels. The step seen for the 254SMO in 15.3M-HAc-Br- is indicative of passivation which is also supported by the XPS results, as a stable passive film was observed on the surface of alloy over the immersion time. However, the step increase in the OCP observed for 316L in 15.3MHAc-Br- is not associated with a significant decrease in corrosion rate. An alternative explanation is that the step coincides with an increase in the importance of pitting due to the evolving surface structure.From the attempts which were made to improve the corrosion resistance of the 316L stainless steel in 15.3M-HAc-Br-, both electropolishing and nitric acid passivation treatments were not sufficient to give any noticeable protection from the aggressive solution. Also, no corrosion inhibition was achieved when the three organic inhibitors, BTA, TU and 2MBI were utilised.
44

Direkt släckning efter uppslag

Ahlin Heikkinen, Daniel, Holmberg-Kasa, Jacob January 2019 (has links)
Målet med denna undersökning är att minska energiförbrukningen vid framställning av gjutna detaljer i austenitiskt manganstål. Detta görs genom att undersöka om det är materialmässigt möjligt att göra förändringar som förkortar framställningsprocessen av de gjutna detaljerna medan snarlika materialegenskaper bibehålls. Den processförändring som undersöks är att slopa upplösningsbehandlingen under framställningsprocessen genom att istället släcka den gjutna detaljen direkt efter uppslag från gjutform. Konkret innebär detta att detaljen slås upp och släcks vid ett tidigare och tidsbestämt skede. Detta tillvägagångssätt kallas inom metallindustrin för direkt släckning och appliceras idag på andra legeringar och tillverkningsprocesser.För att undersöka om det är materialtekniskt möjligt att genomföra denna förändring i framställningsprocessen tas provkroppar fram. Dessa provkroppar är av en förbestämd geometri och tas fram under kontrollerade förutsättningar. Av totalt nio provkroppar släcks sex provkroppar direkt medan tre genomgår upplösningsbehandling där de senast nämnda används som referenser. Provkropparna undersöks med metoder så som mikroskopi och hårdhetsmätning för att bestämma de relevanta materialegenskaperna i provkropparna. Undersökningen visar antydningar på att det är möjligt att införa direkt släckning. Detta eftersom kornstorlek och karbidandelar inte skiljer sig nämnvärt mellan direkt släckta och värmebehandlade prover som har undersökts i denna studie. Men för ett mer definitivt fastställande behövs fortsatta studier. / The aim of this study is to reduce the energy consumed during manufacturing of parts in manganese steel. This is done by determining the possibility to make changes that shortens the production process of the castings while keeping the material properties similar. The process change that is studied is to see if it is possible to skip the heat treatment process by quenching directly after shake out of the casting. This means that the casted product needs to be shaken out and quenched at an earlier and more specific time. This process is known in the metal industry as direct quenching and is by the time of writing applied on different alloys and manufacturing processes.To determine the possibility to make the aforementioned changes to the casting process, taking the material properties into account, sample bodies are created. These sample bodies are of a predetermined geometry and are manufactured under controlled circumstances. From a total of nine sample bodies six are directly quenched and three are put through a heat treatment process, the later mentioned bodies are used as references. The sample bodies are studied with methods such as microscopy and hardness testing. In this study there are indications that it is possible to introduce direct quencing in the production of details made of austenitic manganese steel. This is because the difference in grain size and fraction of carbides is small between the direct quenched and the heat treated samples in this study. Nevertheless, further studies needs to be made to make a more definitive conclusion.
45

Modeling and identification of cumulative creep fatigue damage in an austenitic stainless steel

McGaw, Michael Aaron January 1990 (has links)
No description available.
46

Laves phase strengthening in a cold-worked iron-chromium-nickel-molybdenum austenitic stainless steel

Levin, Victor D. January 1993 (has links)
No description available.
47

Physical Simulation of Variations in Nitrogen Content in Laser Welds of 21-6-9 Austenitic Stainless Steel Alloys

Pan, David Zhi-chao 20 December 2012 (has links)
No description available.
48

High temperature corrosion in biomass-fired energy applications : Alloying effects and test environment comparisons

Elger, Ragna January 2016 (has links)
To reduce the greenhouse effect, the use of renewable fuel has to be increased. As renewable fuel has different characteristics compared to fossil fuel regarding content of trace metals, alkali, chlorine and sulphur, the corrosion characteristics in high temperature energy processes have to be evaluated. This thesis concerns high temperature corrosion in the superheater region of a boiler and the syngas cooler area of a gasifier. For the superheater region, laboratory exposures were performed. The methods included a salt dip exposure, where samples were dipped in an equimolar solution of ZnCl2 and KCl, and two salt bed exposures with different chlorine concentrations, 10 and 20 wt%. Ranking of the materials showed that a Ni content above 10 wt% and Cr above 20 wt% reduced corrosion rates in the salt dip and in the 10% Cl salt bed exposure. For exposure in the 20% Cl bed, even higher alloying was needed. An alumina forming austenitic steel showed future potential in sulphidising-chlorinating environments. For the gasifier region, the effect of HCl in a simulated gasifier atmosphere was studied and also samples exposed in the syngas section of a biomass gasifier were investigated. Metal loss was low for all exposures and it was observed that chlorine had minor influence. For the plant exposed samples, a difference compared to that reported for coal gasifiers was the absence of FeS for the lowest alloyed steel. Instead, a deposit with pronounced content of Zn, Ca, S and O was present on the surface. Zinc was suggested to mitigate corrosion. Thermodynamic modelling was used to explain phases present and to predict the nitridation behaviour of an alumina forming austenitic steel. Equilibrium and kinetic modelling of the nitridation showed good coherence with the observed microstructures. However, the kinetic modelling resulted in larger nitridation depths than observed experimentally which was attributed to the presence of a thin oxide layer on the surface of the samples. / <p>QC 20160510</p>
49

Effect of Semi-Solid Processing on Microstructural Evolution and Mechanical Behavior of Austenitic Stainless Steel

Samantaray, Diptimayee January 2015 (has links) (PDF)
In view of the significant advantages offered by semi-solid processing, such as reduction in number of intermediate processing steps and energy input, and the potential for improving component complexity, it is of paramount interest to develop indigenous technology for semi-solid forming of steels, especially nuclear grade steels. For adopting semisolid processing as an alternative method of manufacturing of steels, it is essential to study the amenability of the steel for the process, understand the fundamental mechanisms of micro structural evolution and evaluate the mechanical properties of the steel after processing. To achieve this goal, the present work attempts to appraise the amenability of a low-carbon variant of 18%Cr-8%Ni austenitic stainless steel (304L SS) for semi-solid processing. Among the many requirements of the feedstock in semi-solid processing, a key feature that makes it amenable for semi-solid processing is the unique microstructure containing solid spheroids in a liquid matrix, thereby enabling thixo-tropic behaviour in the alloy. To understand the micro structural evolution in the steel, during major steps of semi-solid processing (partial melting, soaking and solidification), several experiments are carried out by varying the key parameters such as temperature, soaking time and cooling rate. Experimental results are analyzed in details to specify the effects of these parameters on the microstructure of semi-solid processed steel. The analysis indicates different phase transformation sequences during solidification of the steel from its semi-solid state. On the basis of experimental results, mechanism for micro structural evolution during partial melting and subsequent solidification of 304L SS is proposed. The effect of soaking time on the size and shape of the solid globules is analyzed using the theory of anisotropic Ostwald ripening. The semi-solid processing parameters, such as soaking time and temperature, are found to have significant influence on the globule distribution, globule shape, ferrite distribution and dislocation density, which in turn govern the tensile behaviour and mechanical properties of the steel after processing. Semi-solid processed 304L SS exhibits lower yield strength, ultimate tensile strength and higher strain hardening in temperature range 303–873K compared to as-received (rolled and subsequently annealed) 304L SS. However, semi-solid processed steel shows higher uniform elongation and fracture strain compared to the as-received steel. A pronounced effect of semi-solid processing is also found on the high temperature plasticity and dynamic recrystallization pattern. This work demonstrates the amenability of 300 series austenitic stainless steels for semi-solid processing. The investigation provides the significant insight into the mechanism of micro structural evolution in austenitic stainless steels during semi-solid processing and the important information on the mechanical properties and plastic flow behavior of the semi-solid processed steel. The results give crucial inputs for the optimization of processing parameters for obtaining the desired property in the product, and also for deciding the potential industrial application of the process.
50

Stress corrosion cracking of 316L austenitic stainless steel in high temperature ethanol/water environments

Gulbrandsen, Stephani 06 1900 (has links)
There has been an increase in the production of bio-fuels. Organosolv delignification, high temperature ethanol/water environments, can be used to separate lignin, cellulose, and hemicelluloses in the bio-mass for bio-fuel production. These environments have been shown to induce stress corrosion cracking (SCC) in 316L stainless steel. Previous research has been done in mixed solvent environments at room temperature to understand SCC for stainless steels, but little is known about the behavior in high temperature environments. Simulated organosolv delignification environments were studied, varying water content, temperature, pHe, and Cl- content to understand how these constituents impact SCC. In order for SCC to occur in 316L, there needs to be between 10 and 90 volume % water and the environment needs to be at a temperature around 200°C. Once these two conditions are met, the environment needs to either have pHe < 4 or have more than 10 ppm Cl-. These threshold conditions are based on the organosolv delignification simulated environments tested. SCC severity was seen to increase as water content, temperature, and Cl- content increased and as pHe decreased. To prevent failure of industrial vessels encountering organosolv delignification environments, care needs to be taken to monitor and adjust the constituents to prevent SCC.

Page generated in 0.1432 seconds