• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 6
  • 2
  • 1
  • Tagged with
  • 23
  • 22
  • 10
  • 10
  • 8
  • 8
  • 8
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analyse von Schweißnahtunregelmäßigkeiten beim WIG-Orbitalschweißen von vollaustenitischen Stahlrohren / Analysis of weld irregularities with the TIG-Orbital weld process of fully austenitic steel pipes

Hauser, Gerd 05 March 2012 (has links) (PDF)
Die Bildung von Anlauffarben durch molekularen Sauerstoff im Wurzelschutzgas ist bereits gut erforscht. Weitere Sauerstoffquellen für die Bildung von Anlauffarben sind Feuchte und CO2. Besonders Feuchte ist in diesem Zusammenhang kritisch, da sie sich wesentlich langsamer mit den etablierten Mitteln entfernen lässt. Im Rahmen dieser Arbeit konnte für durch Feuchte verursachte Anlauffarben im Wurzelschutzgas ein Grenzwert von 300 ppm bei 23 °C ermittelt werden. Die Farbausprägung der durch Feuchte verursachten Anlauffarben tendiert besonders bei schwachen bis mittleren Ausprägungen (450-800 ppm) stärker ins Bräunliche als die durch molekularen Sauerstoff verursachten Anlauffarben. Mit Hilfe des an der TU Dresden entwickelten Algorithmus für die Auswahl von Gaskomponenten für Prozessgase, wurde für das gepulste WIG-Orbitalschweißverfahren von austenitischen CrNi-Stahlrohren das Gasgemisch Ar/He/H2 20/70/10 ausgewählt. Gegenüber dem ursprünglich als Prozessgas verwendeten Argon und einem Ar/He 70/30 Gemisch, zeigte sich eine mögliche Steigerung der Vorschubgeschwindigkeit um den Faktor 3,5. Bei Fragen und Anmerkungen zur Arbeit sowie beim Verfassen einer weiterführenden Arbeit bitte Kontakt mit dem Autor aufnehmen (gerd.hauser@gmx.de). Dieser ist an einer Weiterführung des Themas sowie einer unabhängigen Überprüfung der Messwerte sehr interessiert. / The formation of annealing colors by molecular oxygen in the backing gas is already well understood. Other sources of oxygen for the formation of annealing colors are humidity and CO2. Moisture is especially critical in this context, since they can be removed much more slowly with the established agents. As part of this work can be set a limit for annealing colors (caused by moisture in the root protection gas) of 300 ppm moisture with a environment temparatur of 23 ° C. The annealing colors caused by humidity tends especially in low to moderate conzentrtions (450-800 ppm) mor to a brownish than the annealing colors caused by molecular oxygen. Using the algorithm developed at the TU Dresden for the selection of gas components for process gases,the gas mixture Ar/He/H2 20/70/10 was chosen for the pulsed TIG orbital welding of austenitic stainless steel tubes. Compared to the originally used process gas argon and Ar/He-mixture 70/30, showed the Ar/He/H2 mixtur a possible increase in feed rate by a factor of 3.5.
22

Oberflächenfeinwalzen von Förderelementen auf Profilwalzmaschinen

Forke, Erik 10 September 2021 (has links)
Es wird untersucht, ob in Schneckenextrudern verwendete Förderelemente aus Stahl durch das Oberflächenfeinwalzen der schraubförmigen Mantelfläche gleichzeitig geglättet und verfestigt werden können. Steigungsprofile, zu denen auch die Förderelemente zählen, werden bislang oft nach der Hauptformgebung wärmebehandelt und im harten Werkstoffzustand spanend feinbearbeitet. Formgebung, Wärmebehandlung und Feinbearbeitung sind voneinander getrennte Prozessschritte. In dieser Arbeit besteht das Ziel, die Verfahrenseingangsgrößen für die Kombination aus Formgebung und definierter lokaler Werkstoffverfestigung beim Walzen zu erarbeiten. Zu diesem Zweck werden sowohl am Steigungsprofil selbst als auch an einem davon abgeleiteten Rotationsprofil simulative, experimentelle sowie analytische Untersuchungen durchgeführt. Es werden geometrische, kinematische und werkstofftechnische Gesichtspunkte beleuchtet. Aufbauend auf dem Vergleich zwischen Simulationsergebnissen mit der Finite-Elemente-Methode und im Versuch ermittelten Daten werden Haupteinflussfaktoren auf die geometrischen Abweichungen sowie die Härtesteigerung in der Bauteilrandschicht ermittelt. Mit Hilfe eines neu entwickelten sensorischen Werkstückträgers wird die Drehbewegung des Werkstücks erfasst. Aus den analytischen Betrachtungen wird schließlich ein Modell zur qualitativen Beschreibung des Walzkraftverlaufs abgeleitet, das zur Vorauswahl von Verfahrenseingangsgrößen genutzt werden kann. Im Ergebnis wiederholter Messungen wird deutlich, dass mit der geometrischen Gestaltung einer Walzvorform gezielt Einfluss auf Umformgrad und damit Verfestigung im Bauteil genommen werden kann. An den untersuchten hochfesten korrosionsbeständigen austenitischen Stählen ist eine Verdopplung der Halbzeughärte möglich. Die beim Spanen der Vorformen auftretenden Formabweichungen haben großen Einfluss auf die Beschaffenheit der Zielgeometrie sowie die erzielbare Härtesteigerung. Durch Kenntnis der realen Werkstückdrehbewegung während des Walzens lassen sich Rückschlüsse auf die Werkzeuggestaltung und die Walzparameter ziehen. Aufgrund der Untersuchungsergebnisse wird das Verfahren für die Anwendung an korrosionsbeständigen Bauteilen mit mittleren Verschleißschutzanforderungen empfohlen.:1 Einleitung 2 Stand der Technik 3 Zielstellung der Arbeit 4 Beschaffenheit der Werkstücke und Werkzeuge 5 Modellbildung mit Hilfe der FEM 6 Versuchsvorbereitung und Eingangsgrößen 7 Vergleich der Verfahrenskenngrößen in Simulation und Experiment 8 Analytisches Modell zur qualitativen Vorhersage der Walzkraft 9 Bauteileigenschaften nach dem Walzen 10 Zusammenfassung und Ausblick / A combined surface burnishing and mechanical hardening process for steel conveying elements in screw extruders is examined. Helical profiles, that also comprise conveying elements, are often heat treated after shaping followed by fine processing. Shaping, heat treatment and fine processing are sequential process steps. This work deals with the investigation of rolling process parameters that enable both low geometrical deviations and high work hardening of the screw material. For this purpose, helical and axisymmetric profiles are analyzed with simulative, experimental and analytical methods. The investigations highlight geometrical, kinematical and material-related aspects. The main factors with influence on screw geometry and hardness increase in the component subsurface are investigated by means of the comparison between simulative and experimental results. An intelligent workpiece carrier is applied to analyze the part rotation. Based upon analytical observations, a calculation model for the prediction of the rolling force curve over workpiece rotation is developed. This model supports predefining the process input variables. Repeated measurements indicate that the geometrical design of the machined preforms allows for individual strain and hence hardness distributions in the part subsurface. Hardness can be doubled in the investigated corrosion resistant austenitic high strength steels. Form deviations of the part and hardness increase are strongly dependent on geometrical deviations of the preform. Knowledge of part rotation during rolling enables to draw conclusions for tool design and rolling parameters. Based on the results it is suggested to apply the rolling procedure to parts in environments which require high corrosion resistance and moderate wear resistance.:1 Einleitung 2 Stand der Technik 3 Zielstellung der Arbeit 4 Beschaffenheit der Werkstücke und Werkzeuge 5 Modellbildung mit Hilfe der FEM 6 Versuchsvorbereitung und Eingangsgrößen 7 Vergleich der Verfahrenskenngrößen in Simulation und Experiment 8 Analytisches Modell zur qualitativen Vorhersage der Walzkraft 9 Bauteileigenschaften nach dem Walzen 10 Zusammenfassung und Ausblick
23

Analyse von Schweißnahtunregelmäßigkeiten beim WIG-Orbitalschweißen von vollaustenitischen Stahlrohren

Hauser, Gerd 26 May 2011 (has links)
Die Bildung von Anlauffarben durch molekularen Sauerstoff im Wurzelschutzgas ist bereits gut erforscht. Weitere Sauerstoffquellen für die Bildung von Anlauffarben sind Feuchte und CO2. Besonders Feuchte ist in diesem Zusammenhang kritisch, da sie sich wesentlich langsamer mit den etablierten Mitteln entfernen lässt. Im Rahmen dieser Arbeit konnte für durch Feuchte verursachte Anlauffarben im Wurzelschutzgas ein Grenzwert von 300 ppm bei 23 °C ermittelt werden. Die Farbausprägung der durch Feuchte verursachten Anlauffarben tendiert besonders bei schwachen bis mittleren Ausprägungen (450-800 ppm) stärker ins Bräunliche als die durch molekularen Sauerstoff verursachten Anlauffarben. Mit Hilfe des an der TU Dresden entwickelten Algorithmus für die Auswahl von Gaskomponenten für Prozessgase, wurde für das gepulste WIG-Orbitalschweißverfahren von austenitischen CrNi-Stahlrohren das Gasgemisch Ar/He/H2 20/70/10 ausgewählt. Gegenüber dem ursprünglich als Prozessgas verwendeten Argon und einem Ar/He 70/30 Gemisch, zeigte sich eine mögliche Steigerung der Vorschubgeschwindigkeit um den Faktor 3,5. Bei Fragen und Anmerkungen zur Arbeit sowie beim Verfassen einer weiterführenden Arbeit bitte Kontakt mit dem Autor aufnehmen (gerd.hauser@gmx.de). Dieser ist an einer Weiterführung des Themas sowie einer unabhängigen Überprüfung der Messwerte sehr interessiert.:1 Einleitung 1 2 Stand der Technik 2 2.1 WIG-Schweißen 2 2.1.1 Gepulstes WIG-Schweißen 2 2.1.2 WIG-Orbitalschweißen 5 2.2 Schweißen von austenitischem CrNi-Stahl 7 2.2.1 Schweißtechnische Verarbeitung von austenitischem CrNi-Stahl 7 2.2.2 Schweißnahtunregelmäßigkeit: Anlauffarben 12 2.3 Prozess- und Wurzelschutzgase 17 2.3.1 Prozessgase 18 2.3.2 Wurzelschutzgase 21 2.4 Messung von Sauerstoff und Feuchte bei schweißtechnischen Anwendungen 23 3 Präzisierung der Aufgabenstellung 28 4 Analyse von Baustellenbedingungen und Maßnahmen auf Winterbaustellen 29 4.1 Beschreibung der Bedingungen 29 4.2 Beschreibung der Unregelmäßigkeiten 31 4.3 Bewertung der etablierten Maßnahmen 33 5 Versuchsplanung und Durchführung 35 5.1 Experimentelle Randbedingungen 35 5.1.1 Geräte, Messmittel und Software 35 5.1.2 Versuchswerkstoffe und Materialien 42 5.1.3 Schweißparameter 43 5.1.4 Auswertungsmethoden 44 5.2 Einfluss der Feuchte in Wurzelschutzgasen 47 5.2.1 Schweißversuche bei konstanten und wechselnden Temperaturen 47 5.2.2 Versuche zur Feuchteansammlung im Rohr 49 5.2.3 Versuch zur Bildung von Anlauffarben bei unterschiedlichen Feuchtekonzentrationen im Wurzelschutzgas 51 5.3 Einfluss der Prozessgaszusammensetzung für die Gasgemische Ar, Ar/He, Ar/He/H2 53 6 Auswertung der Versuchsergebnisse und Schlussfolgerungen 56 6.1 Anlauffarben auf Winterbaustellen 56 6.1.1 Einfluss der Außentemperatur auf den Schweißprozess 56 6.1.2 Einfluss von Feuchteansammlungen in Rohren 61 6.1.3 Einfluss von unterschiedlichen Feuchtekonzentrationen im Wurzelschutzgas 63 6.1.4 Schlussfolgerungen für die Anwendung in der Praxis 68 6.2 Einfluss der Prozessgaszusammensetzung beim WIG-Orbitalschweißen 74 6.2.1 Versuchsauswertung 74 6.2.2 Anwendung des Mischgases Ar/He/H2 in der Praxis 80 7 Zusammenfassung und Ausblick 81 8 Quellenverzeichnis 82 9 Verzeichnis der Abbildungen und Tabellen 87 10 Anlagenverzeichnis 92 / The formation of annealing colors by molecular oxygen in the backing gas is already well understood. Other sources of oxygen for the formation of annealing colors are humidity and CO2. Moisture is especially critical in this context, since they can be removed much more slowly with the established agents. As part of this work can be set a limit for annealing colors (caused by moisture in the root protection gas) of 300 ppm moisture with a environment temparatur of 23 ° C. The annealing colors caused by humidity tends especially in low to moderate conzentrtions (450-800 ppm) mor to a brownish than the annealing colors caused by molecular oxygen. Using the algorithm developed at the TU Dresden for the selection of gas components for process gases,the gas mixture Ar/He/H2 20/70/10 was chosen for the pulsed TIG orbital welding of austenitic stainless steel tubes. Compared to the originally used process gas argon and Ar/He-mixture 70/30, showed the Ar/He/H2 mixtur a possible increase in feed rate by a factor of 3.5.:1 Einleitung 1 2 Stand der Technik 2 2.1 WIG-Schweißen 2 2.1.1 Gepulstes WIG-Schweißen 2 2.1.2 WIG-Orbitalschweißen 5 2.2 Schweißen von austenitischem CrNi-Stahl 7 2.2.1 Schweißtechnische Verarbeitung von austenitischem CrNi-Stahl 7 2.2.2 Schweißnahtunregelmäßigkeit: Anlauffarben 12 2.3 Prozess- und Wurzelschutzgase 17 2.3.1 Prozessgase 18 2.3.2 Wurzelschutzgase 21 2.4 Messung von Sauerstoff und Feuchte bei schweißtechnischen Anwendungen 23 3 Präzisierung der Aufgabenstellung 28 4 Analyse von Baustellenbedingungen und Maßnahmen auf Winterbaustellen 29 4.1 Beschreibung der Bedingungen 29 4.2 Beschreibung der Unregelmäßigkeiten 31 4.3 Bewertung der etablierten Maßnahmen 33 5 Versuchsplanung und Durchführung 35 5.1 Experimentelle Randbedingungen 35 5.1.1 Geräte, Messmittel und Software 35 5.1.2 Versuchswerkstoffe und Materialien 42 5.1.3 Schweißparameter 43 5.1.4 Auswertungsmethoden 44 5.2 Einfluss der Feuchte in Wurzelschutzgasen 47 5.2.1 Schweißversuche bei konstanten und wechselnden Temperaturen 47 5.2.2 Versuche zur Feuchteansammlung im Rohr 49 5.2.3 Versuch zur Bildung von Anlauffarben bei unterschiedlichen Feuchtekonzentrationen im Wurzelschutzgas 51 5.3 Einfluss der Prozessgaszusammensetzung für die Gasgemische Ar, Ar/He, Ar/He/H2 53 6 Auswertung der Versuchsergebnisse und Schlussfolgerungen 56 6.1 Anlauffarben auf Winterbaustellen 56 6.1.1 Einfluss der Außentemperatur auf den Schweißprozess 56 6.1.2 Einfluss von Feuchteansammlungen in Rohren 61 6.1.3 Einfluss von unterschiedlichen Feuchtekonzentrationen im Wurzelschutzgas 63 6.1.4 Schlussfolgerungen für die Anwendung in der Praxis 68 6.2 Einfluss der Prozessgaszusammensetzung beim WIG-Orbitalschweißen 74 6.2.1 Versuchsauswertung 74 6.2.2 Anwendung des Mischgases Ar/He/H2 in der Praxis 80 7 Zusammenfassung und Ausblick 81 8 Quellenverzeichnis 82 9 Verzeichnis der Abbildungen und Tabellen 87 10 Anlagenverzeichnis 92

Page generated in 0.0783 seconds