• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 452
  • 140
  • 77
  • 46
  • 35
  • 11
  • 9
  • 8
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 931
  • 366
  • 180
  • 161
  • 136
  • 128
  • 106
  • 104
  • 89
  • 88
  • 84
  • 77
  • 73
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
311

Uma nova formulação algébrica para o autômato finito adaptativo de segunda ordem aplicada a um modelo de inferência indutiva. / A new algebraic approach for the second-order finite adaptive automation applied to an inductive inference model.

Reginaldo Inojosa da Silva Filho 02 March 2012 (has links)
O objetivo deste trabalho é apresentar o modelo dos autômatos adaptativos de segunda ordem e mostrar a forte conexão desse modelo com o aprendizado indutivo no limite. Tal modelo é definido com a utilização de um conjunto de transformações sobre autômatos finitos não - determinísticos e a conexão com o aprendizado no limite á estabelecida usando o conceito de mutação composta, onde uma hipótese inicial dá início ao processo de aprendizagem, produzindo, após uma sequência de transformações sofridas por essa primeira hipótese, um modelo final que é o resultado correto do aprendizado. Será apresentada a prova de que um autômato adaptativos de segunda ordem, usado como um aprendiz, pode realizar o processo de aprendizado no limite. O formalismo dos autômatos adaptativos de segunda ordem é desenvolvido sobre o modelo dos autômatos adaptativos de primeira ordem, uma extensão natural do modelo dos autômatos adaptativos clássicos. Embora tenha o mesmo poder computacional, o autômato adaptativo de primeira ordem apresenta uma notação mais simples e rigorosa que o seu antecessor, permitindo derivar novas propriedades. Uma dessas propriedades é justamente sua capacidade de aprendizado. Como consequência, o modelo dos autômatos adaptativos de segunda ordem aumenta a expressividade computacional dos dispositivos adaptativos através da sua notação recursiva, e também através do seu potencial para o uso em aplicações de aprendizado de máquina, ilustrados nesta tese. Uma arquitetura de aprendizado de máquina usando os autômatos adaptativos de segunda ordem é proposto e um modelo de identificação no limite, aplicado em processos de inferência para linguagens livre de contexto, é apresentado. / The purpose of this work is to present the second-order adaptive automaton under an transformation automata approach and to show the strong connection of this model with learning in the limit. The connection is established using the adaptive mutations, in which any hypothesis can be used to start a learning process, and produces a correct final model following a step-by-step transformation of that hypothesis by a second-order adaptive automaton. Second-order adaptive automaton learner will be proved to acts as a learning in the limit. The presented formalism is developed over the first-order adaptive automaton, a natural and unified extension of the classical adaptive automaton. First-order adaptive automaton is a new and better representation for the adaptive finite automaton and to also show that both formulations the original and the newly created have the same computational power. Afterwards both formulations show to be equivalent in representation and in computational power, but the new one has a highly simplified notation. The use of the new formulation actually allows simpler theorem proofs and generalizations, as can be verified in this work. As results, the second-order adaptive automaton enhances the computational expressiveness of adaptive automaton through its recursive notation, and also its skills for the use in machine learning applications were illustrated here. An architecture of machine learning to use the adaptive technology is proposed and the model of identification in limit applied in inference processes for free-context languages.
312

Um modelo para reconhecimento de padrões em imagens de satélites climáticos com base em linguagens formais. / A model for pattern recognition in climate satelites images based on formal languages.

Luís Emílio Cavechiolli Dalla Valle 23 July 2012 (has links)
Uma sequência de imagens de satélite climático é processada aplicando-se um conjunto de operações de filtros, no intuito de extrair padrões de comportamento das nuvens. Caracteres são criados a partir deste tratamento e suas transições são investigadas, explorando a possibilidade de justificar suas ocorrências através de linguagens formais e linguagens bidimensionais, definindo suas gramáticas. Com esta contagem de transições, uma análise de sua forma fractal é iniciada e um paralelo com outras contagens estabelecida, como uma forma de estruturar um modelo computacionalmente menos complexo de prever o tempo, ou o comportamento de qualquer entidade dinâmica que possa ser discretizada. Com estas investigações e experiências, foi possível diminuir a quantidade de símbolos utilizados para justificar as formas das nuvens, bem como criar classes de equivalências para representar conjuntos de símbolos que compartilham as mesmas propriedades, diminuindo ainda mais a complexidade da gramática que se espera encontrar. / A sequence of weather satellite images are processed by applying a set of filtering operations in order to extract the behavior patterns of clouds. Characters are created from this treatment and their transitions are investigated by exploring the possibility of justifying their occurrence across formal languages and two-dimensional languages, defining their grammar. With these count transitions an analysis of their fractals starts and counts a parallel with others established as a way to structure a model less computationally complex to predict the weather, or the behavior of any dynamic entity that could be discretized. With these investigations and experiments, it was possible to reduce the number of symbols used to explain the shapes of clouds and create equivalent classes to represent the symbol sets that share the same properties, further reducing the complexity of the grammar expected to be found.
313

Sequential Quantum-Dot Cellular Automata Design And Analysis Using Dynamic Bayesian Networks

Venkataramani, Praveen 29 October 2008 (has links)
The increasing need for low power and stunningly fast devices in Complementary Metal Oxide Semiconductor Very large Scale Integration (CMOS VLSI) circuits, directs the stream towards scaling of the same. However scaling at sub-micro level and nano level pose quantum mechanical effects and thereby limits further scaling of CMOS circuits. Researchers look into new aspects in nano regime that could effectively resolve this quandary. One such technology that looks promising at nano-level is the quantum dot cellular automata (QCA). The basic operation of QCA is based on transfer of charge rather than the electrons itself. The wave nature of these electrons and their uncertainty in device operation demands a probabilistic approach to study their operation. The data is assigned to a QCA cell by positioning two electrons into four quantum dots. However the site in which the electrons settles is uncertain and depends on various factors. In an ideal state, the electrons position themselves diagonal to each other, through columbic repulsion, to a low energy state. The quantum cell is said to be polarized to +1 or -1, based on the alignment of the electrons. In this thesis, we put forth a probabilistic model to design sequential QCA in Bayesian networks. The timing constraints inherent in sequential circuits due to the feedback path, makes it difficult to assign clock zones in a way that the outputs arrive at the same time instant. Hence designing circuits that have many sequential elements is time consuming. The model presented in this paper is fast and could be used to design sequential QCA circuits without the need to align the clock zones. One of the major advantages of our model lies in its ability to accurately capture the polarization of each cell of the sequential QCA circuits. We discuss the architecture of some of the basic sequential circuits such as J-K flip flop (FF), RAM memory cell and s27 benchmark circuit designed in QCADesigner. We analyze the circuits using a state-of-art Dynamic Bayesian Networks (DBN). To our knowledge this is the first time sequential circuits are analyzed using DBN. For the first time, Estimated Posterior Importance Sampling Algorithm (EPIS) is used to determine the probabilistic values, to study the effect due to variations in physical dimension and operating temperature on output polarization in QCA circuits.
314

The Design, Realization and Testing of the ILU of the CCM2 Using FPGA Technology

Foote, David W. 09 June 1994 (has links)
Most existing computers today are built upon a subset of the arithmetic system which is based upon the foundation of set theory. All formal systems can be expressed in terms of arithmetic and logic on current arithmetic computers through an appropriate model, then work with the model using software manipulation. However, severe speed degradation is the price one must pay for using a software-based approach, making several high-level formal systems impractical. To improve the speed at which computers can implement these high-level systems, one must either design special hardware, implementing specific operations much like math and image processing coprocessors, or execute operations upon multiple processors in a parallel fashion. Due to the increase in developing applications for the manipulation of logic functions, an interest in the logic machine has arisen. Many applications such as logic optimization, simulation, pattern recognition and image processing can be better implemented with a logic machine. This thesis proposes the design, hardware realization, and testing of the iterative logic unit (ILU) of the Cube Calculus Machine II (CCM2). The CCM2 is a general purpose computer with an architecture that emphasizes a data path designed to execute operations of cube calculus, a popular algebraic model used in the minimization of Boolean functions. The ILU is an iterative logic array of cells (ITs) using internal distributed control, enabling the execution of basic cube operations, while the Control Unit (CU) handles global signals from the host computer. The ILU of the CCM2 has been realized in hardware using Xilinx Logic Cell Arrays (LCAs). FPGAs offer the logic density and versatility of gate arrays, with the off-the shelf availability and time-to-market advantages of standard user-programmable devices. These devices can be reconfigured, allowing multiple revisions and future design generations to accommodate the same device, thus saving design and production costs, an ideal solution to the resource and financial problems plaguing the University environment.
315

Tree Restructuring Approach to Mapping Problem in Cellular Architecture FPGAS

Ramineni, Narahari 10 February 1995 (has links)
This thesis presents a new technique for mapping combinational circuits to Fine-Grain Cellular-Architecture FPGAs. We represent the netlist as the binary tree with decision variables associated with each node of the tree. The functionality of the tree nodes is chosen based on the target FPGA architecture. The proposed tree restructuring algorithms preserve local connectivity and allow direct mapping of the trees to the cellular array, thus eliminating the traditional routing phase. Also, predictability of the signal delays is a very important advantage of the developed approach. The developed bus-assignment algorithm efficiently utilizes the medium distance routing resources (buses). The method is general and can be used for any Fine Grain CA-type FPGA. To demonstrate our techniques, ATMEL 6000 series FPGA was used as a target architecture. The area and delay comparison between our methods and commercial tools is presented using a set of MCNC benchmarks. Final layouts of the implemented designs are included. Results show that the proposed techniques outperform the available commercial tools for ATMEL 6000 FPGAs, both in area and delay optimization.
316

INVESTIGATING SMOKE EXPOSURE AND CHRONIC OBSTRUCTIVE PULMONARY DISEASE (COPD) WITH A CALIBRATED AGENT BASED MODEL (ABM) OF IN VITRO FIBROBLAST WOUND HEALING.

Ratti, James A 01 January 2018 (has links)
COPD is characterized by tissue inflammation and impaired remodeling that suggests fibroblast maintenance of structural homeostasis is dysregulated. Thus, we performed in vitro wound healing experiments on normal and diseased human lung fibroblasts and developed an ABM of fibroblasts closing a scratched monolayer using NetLogo to evaluate differences due to COPD or cigarette smoke condensate exposure. This ABM consists of a rule-set governing the healing response, accounting for cell migration, proliferation, death, activation and senescence rates; along with the effects of heterogeneous activation, phenotypic changes, serum deprivation and exposure to cigarette smoke condensate or bFGF. Simulations were performed to calibrate parameter-sets for each cell type using in vitro data of scratch-induced migration, viability, senescence-associated beta-galactosidase and alpha-smooth muscle actin expression. Parameter sensitivities around each calibrated parameter-set were analyzed. This model represents the prototype of a tool designed to explore fibroblast functions in the pathogenesis of COPD and evaluate potential therapies.
317

Core Issues in Graph Based Perceptual Organization: Spectral Cut Measures, Learning

Soundararajan, Padmanabhan 29 March 2004 (has links)
Grouping is a vital precursor to object recognition. The complexity of the object recognition process can be reduced to a large extent by using a frontend grouping process. In this dissertation, a grouping framework based on spectral methods for graphs is used. The objects are segmented from the background by means of an associated learning process that decides on the relative importance of the basic salient relationships such as proximity, parallelism, continuity, junctions and common region. While much of the previous research has been focussed on using simple relationships like similarity, proximity, continuity and junctions, this work differenciates itself by using all the relationships listed above. The parameters of the grouping process is cast as probabilistic specifications of Bayesian networks that need to be learned: the learning is accomplished by a team of stochastic learning automata. One of the stages in the grouping process is graph partitioning. There are a variety of cut measures based on which partitioning can be obtained and different measures give different partitioning results. This work looks at three popular cut measures, namely the minimum, average and normalized. Theoretical and empirical insight into the nature of these partitioning measures in terms of the underlying image statistics are provided. In particular, the questions addressed are as follows: For what kinds of image statistics would optimizing a measure, irrespective of the particular algorithm used, result in correct partitioning? Are the quality of the groups significantly different for each cut measure? Are there classes of images for which grouping by partitioning is not suitable? Does recursive bi-partitioning strategy separate out groups corresponding to K objects from each other? The major conclusion is that optimization of none of the above three measures is guaranteed to result in the correct partitioning of K objects, in the strict stochastic order sense, for all image statistics. Qualitatively speaking, under very restrictive conditions when the average inter-object feature affinity is very weak when compared to the average intra-object feature affinity, the minimum cut measure is optimal. The average cut measure is optimal for graphs whose partition width is less than the mode of distribution of all possible partition widths. The normalized cut measure is optimal for a more restrictive subclass of graphs whose partition width is less than the mode of the partition width distributions and the strength of inter-object links is six times less than the intra-object links. The learning framework described in the first part of the work is used to empirically evaluate the cut measures. Rigorous empirical evaluation on 100 real images indicates that in practice, the quality of the groups generated using minimum or average or normalized cuts are statistically equivalent for object recognition, i.e. the best, the mean, and the variation of the qualities are statistically equivalent. Another conclusion is that for certain image classes, such as aerial and scenes with man-made objects in man-made surroundings, the performance of grouping by partitioning is the worst, irrespective of the cut measure.
318

Prilog razvoju metoda arhitektonskog projektovanja školskih zgrada / A contribution for the method of school architecture design

Ecet Dejan 09 May 2019 (has links)
<p>Centralna tema ovog istraživanje je primena ćelijskog automata računarskog modela u procesu projektovanja školskih zgrada. Istraživanje dominantno obrađuje teme vezane za upotrebu savremenih računarskih tehnologija u procesu arhitektonskog projektovanja, a primenjeno konkretno na školske objekte.</p> / <p>The central theme of this research is the application of the cellular automata computer model in the design of school buildings. Research tends to examine a large number of contemporary architectural design dillemas, foremost the subject of usage of modern informational technologies in architecture, applied to school buildings.</p>
319

Transducer dynamics

Dolzhenko, Egor 14 December 2007 (has links)
Transducers are finite state automata with an output. In this thesis, we attempt to classify sequences that can be constructed by iteratively applying a transducer to a given word. We begin exploring this problem by considering sequences of words that can be produced by iterative application of a transducer to a given input word, i.e., identifying sequences of words of the form w, t(w), t²(w), . . . We call such sequences transducer recognizable. Also we introduce the notion of "recognition of a sequence in context", which captures the possibility of concatenating prefix and suffix words to each word in the sequence, so a given sequence of words becomes transducer recognizable. It turns out that all finite and periodic sequences of words of equal length are transducer recognizable. We also show how to construct a deterministic transducer with the least number of states recognizing a given sequence. To each transducer t we associate a two-dimensional language L²(t) consisting of blocks of symbols in the following way. The first row, w, of each block is in the input language of t, the second row is a word that t outputs on input w. Inductively, every subsequent row is a word outputted by the transducer when its preceding row is read as an input. We show a relationship of the entropy values of these two-dimensional languages to the entropy values of the one-dimensional languages that appear as input languages for finite state transducers.
320

Model based analysis of time-aware web services interactions

Ponge, Julien Nicolas, Computer Science & Engineering, Faculty of Engineering, UNSW January 2009 (has links)
Web services are increasingly gaining acceptance as a framework for facilitating application-to-application interactions within and across enterprises. It is commonly accepted that a service description should include not only the interface, but also the business protocol supported by the service. The present work focuses on the formalization of the important category of protocols that include time-related constraints (called timed protocols), and the impact of time on compatibility and replaceability analysis. We formalized the following timing constraints: CInvoke constraints define time windows of availability while MInvoke constraints define expirations deadlines. We extended techniques for compatibility and replaceability analysis between timed protocols by using a semantic-preserving mapping between timed protocols and timed automata, leading to the novel class of protocol timed automata (PTA). Specifically, PTA exhibit silent transitions that cannot be removed in general, yet they are closed under complementation, making every type of compatibility or replaceability analysis decidable. Finally, we implemented our approach in the context of a larger project called ServiceMosaic, a model-driven framework for web service life-cycle management.

Page generated in 0.0729 seconds