• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stabilité des images inverses des fibrés tangents et involutions des variétés symplectiques

Camere, Chiara 03 December 2010 (has links) (PDF)
Résumé : Dans cette thèse j'ai travaillé sur deux problèmes différents dans le domaine de la Géométrie Algébrique. La première partie de cette thèse consiste dans l'étude de la stabilité des images inverses du fibré tangent de l'espace projectif sur des variétés projectives. La stabilité de ces fibrés est équivalente à celle du noyau du morphisme d'évaluation M associé à un fibré en droites L engendré par ses sections globales. On obtient un résultat optimal dans le cas des courbes projectives et ensuite on utilise ce résultat pour en déduire la stabilité dans le cas des quelques surfaces projectives, notamment K3 et abéliennes. Un second problème que nous abordons est l'étude du lieu fixe d'une involution symplectique d'une variété irréductible holomorphe symplectique de dimension 4 telle que b2 = 23. On montre qu'il y a seulement trois cas possibles pour le nombre des points fixes isolés et des surfaces K3 fixées. On conjecture que seulement un cas soit possible, celui avec 28 points fixes isolés et une surface K3 fixée, et qu'une telle involution ne fixe jamais une surface abélienne. On vérifie cette conjecture dans quelques exemples.

Page generated in 0.0726 seconds