• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 162
  • 54
  • 19
  • 15
  • 14
  • 9
  • 8
  • 8
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 339
  • 142
  • 77
  • 69
  • 61
  • 52
  • 43
  • 36
  • 35
  • 35
  • 33
  • 33
  • 33
  • 31
  • 30
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Impact of state fragility on capital flows and economic growth in Nigeria

Laniran, Temitope J. January 2018 (has links)
This thesis aims to investigate the impact of state fragility on capital inflows and economic growth in Nigeria over the period 1980-2015. In line with existing studies, it adopts an augmented neoclassical growth model where capital is divided into domestic and foreign capital inflows (FDI, ODA and Remittances). Using an autoregressive distributed lag (ARDL) bounds testing approach to co-integration, significant long-run relationship was confirmed between state fragility, capital flows and economic growth. The results reveal domestic capital to be very significant and contribute positively to economic growth. Similarly it was observed that remittances remain a very crucial form of capital flow to Nigeria and that the presence of state fragility makes it more significant. For ODA a positive contribution to economic growth was observed, however, the presence of state fragility renders it insignificant. In the case of FDI, the study found a negative relationship between FDI and economic growth albeit insignificant. However, the presence of state fragility makes it significant but still negative. A negative relationship was also observed between state fragility and economic growth. These findings, implies that while the issue of state fragility needs to be addressed and concerted efforts put into building state resilience, not just for the direct impact of state fragility on the economy, but also its impact on the economy through other channels such as capital flows.
102

Volatilitetsprognoser på den amerikanska aktiemarknaden : En kvantitativ studie om den implicita volatilitetens prognosförmåga på realiserad volatilitet / Volatility forecasts on the American stock market

Lindahl, Robert, Kylberg, Carl January 2022 (has links)
Bakgrund: För att kunna ta välgrundade finansiella beslut, behöver aktörer göra prognoser om vad som kommer ske i framtiden. Detta har medfört att både forskare och praktiker har byggt olika modeller som syftar till att prognostisera framtiden. Ett centralt mått i många finansiella modeller är tillgångens volatilitet, som är ett mått på prisförändringen under en tidsperiod. Den implicita volatiliteten, härledd via derivatmarknaden och prissättningsmodeller, är en marknadsprognos för en tillgångs framtida volatilitet. Tidigare forskning pekar på att den implicita volatiliteten är bättre på att prognostisera den framtida volatiliteten jämfört med modeller som använder historisk volatilitet. Däremot finns det osäkerheter kring hur variabler som handelsvolym och löptid påverkar dessa volatilitetsprognoser. Syfte: Syftet med studien är att undersöka hur prognosförmågan hos den implicita volatiliteten för den framtida realiserade volatiliteten förhåller sig vid olika löptider samt vid olika handelsvolymer. Metod: För att uppnå syftet med studien har vi använt oss av en kvantitativ metod samt en deduktiv ansats. Urvalet består av 100 bolag som varit noterade på S&P 500 mellan 2017 och 2021. Vidare har regressioner utförts i syfte till att fastställa den implicita volatilitetens prognosförmåga. Två modeller har använts varav en heterogeneous autoregressive modell (HAR) och en enkel linjär regression (ELR). Slutligen analyseras regressionerna utifrån kategoriseringar baserat på löptid samt olika handelsvolym. Slutsats: Studien finner inga signifikanta skillnader bland förklaringsgraderna med avseende på olika löptider. Däremot finner vi att den implicita volatiliteten från kortare optioner tenderar att underskatta den realiserade volatiliteten till högre grad än för längre löptider. I kontrast till tidigare forskning finner vi att prognoser blev sämre vid högre handelsvolymer men att underskattningar är vanligare för lägre handelsvolymer.
103

Spatio-temporal Analyses For Prediction Of Traffic Flow, Speed And Occupancy On I-4

Chilakamarri Venkata, Srinivasa Ravi Chandra 01 January 2009 (has links)
Traffic data prediction is a critical aspect of Advanced Traffic Management System (ATMS). The utility of the traffic data is in providing information on the evolution of traffic process that can be passed on to the various users (commuters, Regional Traffic Management Centers (RTMCs), Department of Transportation (DoT), ... etc) for user-specific objectives. This information can be extracted from the data collected by various traffic sensors. Loop detectors collect traffic data in the form of flow, occupancy, and speed throughout the nation. Freeway traffic data from I-4 loop detectors has been collected and stored in a data warehouse called the Central Florida Data Warehouse (CFDW[trademark symbol]) by the University of Central Florida for the periods between 1993-1994 and 2000 - 2003. This data is raw, in the form of time stamped 30-second aggregated data collected from about 69 stations over a 36 mile stretch on I-4 from Lake Mary in the east to Disney-World in the west. This data has to be processed to extract information that can be disseminated to various users. Usually, most statistical procedures assume that each individual data point in the sample is independent of other data points. This is not true to traffic data as they are correlated across space and time. Therefore, the concept of time sequence and the layout of data collection devices in space, introduces autocorrelations in a single variable and cross correlations across multiple variables. Significant autocorrelations prove that past values of a variable can be used to predict future values of the same variable. Furthermore, significant cross-correlations between variables prove that past values of one variable can be used to predict future values of another variable. The traditional techniques in traffic prediction use univariate time series models that account for autocorrelations but not cross-correlations. These models have neglected the cross correlations between variables that are present in freeway traffic data, due to the way the data are collected. There is a need for statistical techniques that incorporate the effect of these multivariate cross-correlations to predict future values of traffic data. The emphasis in this dissertation is on the multivariate prediction of traffic variables. Unlike traditional statistical techniques that have relied on univariate models, this dissertation explored the cross-correlation between multivariate traffic variables and variables collected across adjoining spatial locations (such as loop detector stations). The analysis in this dissertation proved that there were significant cross correlations among different traffic variables collected across very close locations at different time scales. The nature of cross-correlations showed that there was feedback among the variables, and therefore past values can be used to predict future values. Multivariate time series analysis is appropriate for modeling the effect of different variables on each other. In the past, upstream data has been accounted for in time series analysis. However, these did not account for feedback effects. Vector Auto Regressive (VAR) models are more appropriate for such data. Although VAR models have been applied to forecast economic time series models, they have not been used to model freeway data. Vector Auto Regressive models were estimated for speeds and volumes at a sample of two locations, using 5-minute data. Different specifications were fit--estimation of speeds from surrounding speeds; estimation of volumes from surrounding volumes; estimation of speeds from volumes and occupancies from the same location; estimation of speeds from volumes from surrounding locations (and vice versa). These specifications were compared to univariate models for the respective variables at three levels of data aggregation (5-minutes, 10 minutes, and 15 minutes) in this dissertation. For data aggregation levels of [less than]15 minutes, the VAR models outperform the univariate models. At data aggregation level of 15 minutes, VAR models did not outperform univariate models. Since VAR models were used for all traffic variables reported by the loop detectors, this made the application of VAR a true multivariate procedure for dynamic prediction of the multivariate traffic variables--flow, speed and occupancy. Also, VAR models are generally deemed more complex than univariate models due to the estimation of multiple covariance matrices. However, a VAR model for k variables must be compared to k univariate models and VAR models compare well with AutoRegressive Integrated Moving Average (ARIMA) models. The added complexity helps model the effect of upstream and downstream variables on the future values of the response variable. This could be useful for ATMS situations, where the effect of traffic redistribution and redirection is not known beforehand with prediction models. The VAR models were tested against more traditional models and their performances were compared against each other under different traffic conditions. These models significantly enhance the understanding of the freeway traffic processes and phenomena as well as identifying potential knowledge relating to traffic prediction. Further refinements in the models can result in better improvements for forecasts under multiple conditions.
104

Essays on Small Open Economies

Zhong, Jiansheng 30 August 2017 (has links)
No description available.
105

The Geography of the Intra-National Digital Divide in a Developing Country: A Spatial Analysis of the Regional-Level Data from Kenya

Cheruiyot, Kenneth Koech, Ph.D. 20 September 2011 (has links)
No description available.
106

Frequency tracking and its application in speech analysis

Totarong, Pian January 1983 (has links)
No description available.
107

Essays on theories and applications of spatial econometric models

Lin, Xu 14 July 2006 (has links)
No description available.
108

Novel Approach for Modeling Wireless Fading Channels using a Finite State Markov Chain

Salam, A.O.A., Sheriff, Ray E., Al-Araji, S.R., Mezher, K., Nasir, Q. 03 July 2017 (has links)
yes / Empirical modeling of wireless fading channels using common schemes such as autoregression and thefinitestate Markov chain (FSMC) is investigated. The conceptual background of both channel structures and the establishment of their mutual dependence in a confined manner are presented. The novel contribution lies in the proposal of a new approach for deriving the state transition probabilities borrowed from economic disciplines, which has not been studied so far with respect to the modeling of FSMC wireless fading channels. The proposed approach is based on equal portioning of the received signal-to-noise ratio, realized by using an alternative probability construction that was initially highlighted by Tauchen. The associated statistical procedure shows that afirst-order FSMC with a limited number of channel states can satisfactorily approximate fading. The computational overheads of the proposed technique are analyzed andproven to be less demanding compared to the conventional FSMC approach based on the levelcrossing rate. Simulations confirm the analytical results and promising performance of the new channel modelbased on the Tauchen approach without extracomplexity costs.
109

Volatility Modeling and Risk Measurement using Statistical Models based on the Multivariate Student's t Distribution

Banasaz, Mohammad Mahdi 01 April 2022 (has links)
An effective risk management program requires reliable risk measurement. Failure to assess inherited risks in mortgage-backed securities in the U.S. market contributed to the financial crisis of 2007–2008, which has prompted government regulators to pay greater attention to controlling risk in banks, investment funds, credit unions, and other financial institutions to prevent bankruptcy and financial crisis in the future. In order to calculate risk in a reliable manner, this thesis has focused on the statistical modeling of expected return and volatility. The primary aim of this study is to propose a framework, based on the probabilistic reduction approach, to reliably quantify market risk using statistical models and historical data. Particular emphasis is placed on the importance of the validity of the probabilistic assumptions in risk measurement by demonstrating how a statistically misspecified model will lead the evaluation of risk astray. The concept of market risk is explained by discussing the narrow definition of risk in a financial context and its evaluation and implications for financial management. After highlighting empirical evidence and discussing the limitations of the ARCH-GARCH-type volatility models using exchange rate and stock market data, we proposed Student's t Autoregressive models to estimate expected return and volatility to measure risk, using Value at Risk (VaR) and Expected Shortfall (ES). The misspecification testing analysis shows that our proposed models can adequately capture the chance regularities in exchange rates and stock indexes data and give a reliable estimation of regression and skedastic functions used in risk measurement. According to empirical findings, the COVID-19 pandemic in the first quarter of 2020 posed an enormous risk to global financial markets. The risk in financial markets returned to levels prior to the COVID-19 pandemic in 2021, after COVID-19 vaccine distribution started in developed countries. / Doctor of Philosophy / Reliable risk measurement is necessary for any effective risk management program. Hence, the primary purpose of this dissertation was to propose a framework to quantify market risk using statistical models and historical data, with a particular emphasis placed on checking the validity of probabilistic assumptions underlying models. After discussing the concept of market risk and its evaluation methods in financial management, we explored the empirical evidence in financial data and highlighted some limitations of other well-known modeling approaches. In order to ameliorate limitations, this study proposed Student's t Autoregressive models to estimate the conditional mean and the conditional variance of the financial variables and use them to measure risk via two popular methods: Value at Risk (VaR) and Expected Shortfall (ES). Further investigation shows that our proposed models can adequately model exchange rates and stock indexes data and give reliable estimations to use in risk measurement. We used our model to quantify risk in global financial markets in recent years. The results show that the COVID-19 pandemic posed an enormous risk to global financial markets in the first quarter of 2020. In 2021, the level of risk in financial markets returned to levels before the COVID-19 pandemic, after COVID-19 vaccine distribution started in developed countries.
110

Implementation of Instantaneous Frequency Estimation based on Time-Varying AR Modeling

Kadanna Pally, Roshin 27 May 2009 (has links)
Instantaneous Frequency (IF) estimation based on time-varying autoregressive (TVAR) modeling has been shown to perform well in practical scenarios when the IF variation is rapid and/or non-linear and only short data records are available for modeling. A challenging aspect of implementing IF estimation based on TVAR modeling is the efficient computation of the time-varying coefficients by solving a set of linear equations referred to as the generalized covariance equations. Conventional approaches such as Gaussian elimination or direct matrix inversion are computationally inefficient for solving such a system of equations especially when the covariance matrix has a high order. We implement two recursive algorithms for efficiently inverting the covariance matrix. First, we implement the Akaike algorithm which exploits the block-Toeplitz structure of the covariance matrix for its recursive inversion. In the second approach, we implement the Wax-Kailath algorithm that achieves a factor of 2 reduction over the Akaike algorithm in the number of recursions involved and the computational effort required to form the inverse matrix. Although a TVAR model works well for IF estimation of frequency modulated (FM) components in white noise, when the model is applied to a signal containing a finitely correlated signal in addition to the white noise, estimation performance degrades; especially when the correlated signal is not weak relative to the FM components. We propose a decorrelating TVAR (DTVAR) model based IF estimation and a DTVAR model based linear prediction error filter for FM interference rejection in a finitely correlated environment. Simulations show notable performance gains for a DTVAR model over the TVAR model for moderate to high SIRs. / Master of Science

Page generated in 0.0692 seconds