• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 68
  • 12
  • 9
  • 5
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 118
  • 68
  • 68
  • 63
  • 39
  • 32
  • 30
  • 29
  • 26
  • 26
  • 26
  • 25
  • 25
  • 23
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Prediction of Aerodynamically Induced Hood Vibration of Trailing Vehicles

Auza Gutierrez, Rodrigo 09 July 2019 (has links)
No description available.
72

Spatial Modeling of the Atmospheric Carbon Dioxide in the Contiguous USA

Uddin, Muhammad Salaha January 2020 (has links)
No description available.
73

Design of compact automotive heat exchanger, analysing the effects of RANS models and utilising Additive Manufacturing

Srikkanth, Nikhil, Brzuchalski, Bartosz January 2022 (has links)
The analytical modelling of complex turbulent airflow remains one of the great unsolved mysteries of physics, but in this paper two widely used Reynolds Averaged Navier-Stokes models (k-$\epsilon$ and k-$\omega$ SST) are compared while designing a heat exchanger for the KTH Formula Student electric race car. CAD software was used to design lattices for the heat exchanger core and theorise about how to increase heat transfer while also taking into account the utilisation of metal additive manufacturing. The models were then analysed using Computational Fluid Dynamics to determine their characteristics as well as the effects of the two turbulence models.  It was found that the first iteration of the second design performed best in terms of pressure drop and generating turbulent kinetic energy closely followed by the second iteration of the second design and the second iteration of the first design. When comparing the turbulence models the results indicated agreement with their theoretical foundations. The first model overestimating turbulent kinetic energy relative to the second, which picked up more detail of near-wall turbulence thanks to better boundary layer formulation. Future work includes improving the simulation setup, correlating the results with wind tunnel testing and further evaluating more complex designs.
74

Hydroacoustic Modelling of Podded Propulsion System : Underwater Radiated Noise Prediction Using ANSYS

Persson, Martin January 2022 (has links)
Ocean noise pollution is an invisible but growing threat. There are many sources of sound in the ocean but human underwater radiated noise, in particular from shipping is one of the most prominent one. Ocean noise pollution can interfere or sometimes even directly harm marine life.  This thesis is in collaboration with Kongsberg Maritime which aims to develop an underwater radiated noise prediction method for the ELegance pod system. In particular, the focus is on the noise generated as a direct effect of the permanent magnet motor vibrations. Kongsberg wants to be able to calculate the underwater radiated noise for different pod geometries and engine configurations in order to find an optimal operating speed of the electric motor. The underwater radiated noise prediction is carried out using two methods. The first one is a 2-way coupled fluid-structure interaction harmonic response model, dealing with the vibrations. In addition, the flow induced noise is evaluated using CFD combined with Ffowcs-Williams Hawkings acoustic analogy.  The harmonic response model is used to calculate the sound in terms of a frequency response, which can be translated to revolutions per minute of the rotor. This allows Kongsberg to identify rotor speeds where the operation may or may not be optimal. The flow induced noise is investigated for a typical transit speed. The results show this noise is multiple orders of magnitude smaller than the sound caused by the vibrations. This together with the fact that the computational cost of CFD is large suggests that the flow induced noise is not something Kongsberg needs to consider at an early design stage. Neither the propeller nor cavitation is considered in this thesis, due to the limited computational resources but also that Kongsberg designs propellers that are vessel specific. These sources of sound become important when considering the full acoustic profile of a propulsion unit of this type.
75

Shape optimization of axial cooling fan via 3D CFD simulation and surrogate modeling / Formoptimering av axiel kylningsfläkt via 3D CFD-simulering och surrogatmodellering

Granlöf, Martin January 2021 (has links)
Due to legislative reasons and environmental concerns the automotive and transport sector are shifting their focus from traditional internal combustion engine (ICE) vehicles to development of battery electric vehicles (BEVs). This brings new challanges to design of cooling systems where axial fans are one of the key components. Axial fans are usually designed with regards to a certain operating condition and outside this region the efficiency of the fan drops drastically. Due to difficulty in specifying the exact operational parameters when placed in a car, post-design optimization may be necessary to ensure maximized performance. This thesis focuses on fan blade shape optimization through mesh morphing using the surrogate based optimization algorithm called Efficient Global Optimization (EGO). The target fans was a 9 bladed prototype fan by Johnson Electric with uneven blade spacing. The optimization uses steady state Reynolds-averaged Navier-Stokes (RANS) simulations to evaluate the fan designs and a Bezier curve parametrization in order to change the fan blade shape together with mesh morphing. The simulation setup was evaluated before peceding with the optimization, and showed good agreement close to intended operational conditions. Differences in turbulence modeling treatments were also evaluated in order to have a satisfactory agreement with measurement data. The EGO algorithm manages to provide fan designs with higher total-to-static efficiency at several different operational conditions. Evaluation of the optimized fan designs was limited to comparison with the provided measurement data and corrensponding simulations. Acoustic evaluation of selected fan designs is also attemped, but further work is required in order for the study to result in a quantitative comparison. / På grund av lagstiftning och miljöpåverkan har bil- och transportindustrin börjat skifta fokus från traditionella förbränningsfordon till utveckling av batteridrivna elbilar. Med detta medföljer nya utmaningar kring kylsystemsdesign där axiella fläktar är en av huvudkomponenterna hos systemet. Axiella fläktar är vanligtvis designade kring ett specifikt drifttillstånd och utanför detta har fläkten avsevärt lägre verkningsgrad. På grund av svårigheter att specificera detta drifttillstånd med hög precision, speciellt när fläkten monteras i en bil, kan efterdesigns-optimering vara nödvändigt för att uppnå maximal prestanda. Denna avhandling fokuserar på form-optimering av fläkt via mesh morphing med hjälp av den surrogat-baserade optimeringsalgoritmen Efficient Global Optimization (EGO). Fläkten som optimerades var en prototypfläkt designad av Johnson Electric med 9 fläktblad och icke-symmetriska mellanrum mellan bladen. I optimeringsprocessen användes icke-tidsberoende Reynolds-averaged Navier-Stokes (RANS) simuleringar för att utvärdera fläktdesignerna och parametrisering med hjälp av Bezier kurvor och mesh morphing för att ändra fläktbladen. Simulerings-uppställningen utvärderades innan optimeringen och bra överensstämning nära avsett driftstillstånd kunde påvisas. Skillnader i turbulens-modelering utvärderades även för att få en tillfredställande överensstämning med mätdata. EGO-algoritmen klarar att förse fläktdesigner med högre total-till-statisk verkningsgrad vid flera olika driftstillstånd. Utvärdering av fläktdesignerna var dock begränsad till jämförelse med mätdata och motsvarande simuleringsdata. En akustik utvärdering av utvalda fläkt-designer försöktes, men mer arbete krävs för att studien ska erhålla en kvantitativ jämförelse.
76

Bidirectional DC-DC Power Converter Design Optimization, Modeling and Control

Zhang, Junhong 26 February 2008 (has links)
In order to increase the power density, the discontinuous conducting mode (DCM) and small inductance is adopted for high power bidirectional dc-dc converter. The DCM related current ripple is minimized with multiphase interleaved operation. The turn-off loss caused by the DCM induced high peak current is reduced by snubber capacitor. The energy stored in the capacitor needs to be discharged before device is turned on. A complementary gating signal control scheme is employed to turn on the non-active switch helping discharge the capacitor and diverting the current into the anti-paralleled diode of the active switch. This realizes the zero voltage resonant transition (ZVRT) of main switches. This scheme also eliminates the parasitic ringing in inductor current. This work proposes an inductance and snubber capacitor optimization methodology. The inductor volume index and the inductor valley current are suggested as the optimization method for small volume and the realization of ZVRT. The proposed capacitance optimization method is based on a series of experiments for minimum overall switching loss. According to the suggested design optimization, a high power density hardware prototype is constructed and tested. The experimental results are provided, and the proposed design approach is verified. In this dissertation, a general-purposed power stage model is proposed based on complementary gating signal control scheme and derived with space-state averaging method. The model features a third-order system, from which a second-order model with resistive load on one side can be derived and a first-order model with a voltage source on both sides can be derived. This model sets up a basis for the unified controller design and optimization. The Δ-type model of coupled inductor is introduced and simplified to provide a more clearly physical meaning for design and dynamic analysis. These models have been validated by the Simplis ac analysis simulation. For power flow control, a unified controller concept is proposed based on the derived general-purposed power stage model. The proposed unified controller enables smooth bidirectional current flow. Controller is implemented with digital signal processing (DSP) for experimental verification. The inductor current is selected as feedback signal in resistive load, and the output current is selected as feedback signal in battery load. Load step and power flow step control tests are conducted for resistive load and battery load separately. The results indicate that the selected sensing signal can produce an accurate and fast enough feedback signal. Experimental results show that the transition between charging and discharging is very smooth, and there is no overshoot or undershoot transient. It presents a seamless transition for bidirectional current flow. The smooth transition should be attributed to the use of the complementary gating signal control scheme and the proposed unified controller. System simulations are made, and the results are provided. The test results have a good agreement with system simulation results, and the unified controller performs as expected. / Ph. D.
77

A Fundamental Study of Advance Ratio, Solidity, Turbine Radius, and Blade Profile on the Performance Characteristics of Vertical Axis Turbines (VATs)

Norman, Adam Edward 26 July 2016 (has links)
In this dissertation, various VAT parameters are investigated to determine the effect of the overall efficiency of the turbine at a high Reynolds number. To increase the efficiency of the vertical axis turbines, 2D CFD simulations are completed in an effort to better understand the physics behind the operation of these turbines. Specifically, the effect of advance ratio, solidity, and wake interactions were investigated. Simulations were completed in OpenFOAM using the k-ω SST turbulence model at a nominal Reynolds number of 500,000 using a NACA 0015 airfoil. To simulate the motion of the turbine, Arbitrary Mesh Interfacing (AMI) was used. For all of the parameters tested, it was found that the geometric effective angle of attack seen by the turbine blades had a significant impact on the power extracted from the flow. The range of effective angles of attack was found to decrease as the advance ratio increased. In spite of this, a severe loss in the power coefficient occurred at an advance ratio of 2.5 during which the blade experienced dynamic stall. This effect was also seen when the number of turbine blades was changed to four, at a solidity of 1.08. This negative impact on performance was found to be due to the increase in the drag component of the tangential force when dynamic stall occurs. Results indicate that wake interactions between subsequent blades have a large impact on performance especially when the wake interaction alters the flow direction sufficiently to create conditions for dynamic stall. To improve the performance of the VAT in the presence of dynamic stall, calculations were completed of a static twisted blade profile using GenIDLEST and OpenFOAM. There was found to be no improvement in the lift coefficient when comparing the twisted blade profile with a 2D blade at the same median angle of attack as the twisted blade. To further see the effects of the twisted blade, an effective VAT pitching motion was given to the blade and again compared to a 2D blade with the same motion. In this case there was significant improvement seen in the performance of the twisted blade. / Master of Science
78

Turbulence and Sound Generated by a Rotor Operating Near a Wall

Murray, Henry Hall IV 08 June 2016 (has links)
Acoustic and aerodynamic measurements have been carried out on a rotor operating in a planar turbulent boundary layer near a wall for a variety of thrust conditions and yaw angles with respect to the inflow. At the highest thrust condition a strong flow reversal in the wall-rotor tip gap was observed. Average velocity fields filtered by the angular position of the rotor show that the flow reversal is fed by jets of fluid that tend to form below the blade as it passes by the wall. Instantaneous velocity measurements show the presence of strong vortices in the tip gap. These vortices were characterized and found to be both stronger and more numerous on the downstroke side of the tip gap. Additionally, vortices with the same handedness as the bound circulation in the blade were more numerous and only located on the downstroke side of the tip gap. Those with the opposite handedness were found to be only located on the upstroke side. Unexpectedly strong far-field acoustic response at the blade passage frequency at this highest thrust condition and is believed to be due to an interaction of the blade tip with these vortices. At moderate thrust, when the rotor was yawed toward the downstroke side the far field acoustic response at the blade passage frequency was found to increase. The opposite was true as it was yawed toward the upstroke side. At the highest thrust, however the unyawed rotor had the strongest blade passage frequency response which is believed to be due to stronger vortex-tip interaction in this case. / Master of Science
79

Effect of Valve Seat Geometry on In-Cylinder Swirl : A Comparative Analysis Between Steady-State and Transient Approaches

Lopes, António January 2024 (has links)
The urgent need to reduce green house gas emissions from the transport sector, particularly from heavy-duty trucks, has underscored the importance of developing more efficient internal combustion engines. Using computational fluid dynamics (CFD), this work investigated the impact of valve seat geometry on in-cylinder swirl, addressing a gap in research. Additionally, the suitability of steady-state simulations for providing valid qualitative data on port flow was assessed. To answer both research questions, two approaches were followed: steady-state port flow RANS simulations, and transient RANS simulations in a running engine setup. The results from the steady-state simulations highlighted the limitations of this approach to qualitatively predict swirl, as this quantity is highly dependent on the mesh. Despite these limitations, the steady-state simulations were still able to capture the trade-off between swirl and discharge coefficient, outlined in the literature. Transient simulations revealed that in-cylinder swirl is affected by the geometry of the valve seats. It was found that valve seats that direct the flow towards the liner, while avoiding strong flow separation tend to promote higher swirl, whereas valve seats that induce strong flow separation lead to lower swirl ratios. Despite the trade-off between swirl and volumetric efficiency, the volumetric efficiency losses were found to be practically negligible. The study emphasizes the need for a more comprehensive set of simulations, including more valve lifts and pressure ratios. Given the unsuitability of the steady-state simulations to predict swirl trends, future investigations should focus on replacing this approach by transient simulations with steady-state geometry and boundary conditions, properly addressing flow time-dependency at relatively low computational cost, and facilitating validation with experimental data.
80

Simulation aérodynamique d'extrémités de pales de rotors sustentateurs d'hélicoptère / Aerodynamic simulations of helicopter main-rotor blade tips

Joulain, Antoine 08 December 2015 (has links)
L’aérodynamique de l’hélicoptère est fortement impactée par les tourbillons générés aux extrémités de pales. La complexité des phénomènes en jeux et l’insuffisance de données expérimentales locales font du design d’extrémité un véritable défi. Cette étude propose une nouvelle approche dédiée à l’étude des extrémités en vol stationnaire. Une méthode numérique rapide et précise est mise au point afin d’étudier une extrémité de pale en rotation comme une extrémité d’aile fixe. Chaque étape de la construction de la méthode est validée par des comparaisons détaillées avec des données expérimentales publiées. Le code CFD elsA est dans un premier temps utilisé pour mettre en place une méthode de calcul basée sur la résolution des équations Reynolds-Averaged Navier-Stokes en stationnaire. La convergence de la solution et l’indépendance au maillage et aux paramètres numériques sont étudiées en détail en deux, puis en trois dimensions. La précision importante de la solution numérique permet d’analyser finement la physique de l’enroulement tourbillonnaire en extrémité. Des géométries tronquée et arrondie sont étudiées en détail, et révèlent la présence de systèmes tourbillonnaires complexes. Puis la nouvelle méthode d’adaptation pale en rotation / aile fixe est présentée. Une méthode de calcul hybride est mise au point entre le code de mécanique du vol HOST et le code elsA. En repère fixe, l’aérodynamique globale sur la pale et locale en extrémité est calculée fidèlement pour toutes les configurations étudiées. Comparée aux méthodes d’adaptation précédemment publiées, cette nouvelle stratégie offre une amélioration considérable concernant la simulation de l’aérodynamique de pale. / Helicopter aerodynamics is strongly influenced by the vortices generated from the rotor-blade tips. The design of efficient tip shapes is a challenging task because of the complexity of the aerodynamic phenomena involved and the lack of local blade-tip flow measurements. This work provides a contribution to the design of helicopter tips in hover. An efficient, relatively simple and quick numerical method is set up to study rotating blade tips in fixed-wing configurations. The accuracy of the method is shown at each step of the construction by comprehensive comparisons with reliable experimental data from the literature. First, an efficient steady Reynolds-Averaged Navier-Stokes method is constructed using ONERA's elsA code. Comprehensive studies of convergence, grid dependence and sensitivity to the numerical method are performed in two and three dimensions. The very good agreement of the solution with measurements and the accuracy of the numerical method allow a physical analysis with unprecedented detail of the vortex generation and roll-up near square and rounded wing tips. The new methodology of framework adaptation is then presented. An uncoupled hybrid strategy is set up using AIRBUS HELICOPTERS' Comprehensive Analysis code HOST and the Computational Fluid Dynamics solver elsA. Global and local performance calculations are validated for all investigated test cases. Comparison with previously published adaptation methods indicates considerable improvement in the prediction of the blade aerodynamics.

Page generated in 0.0597 seconds