• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 2
  • Tagged with
  • 11
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simulering av hydrauliken i Haldex-kopplingen / Simulation of the hydraulic system in HLSC

Söderlund, Martin, Öhman, Fredrik January 2005 (has links)
<p>HLSC (Haldex Limited Slip Coupling) är en koppling för fyrhjulsdrift i personbilar, och för-finas ständigt för att ge en bättre funktion och körupplevelse. Kopplingen använder ett hyd-raultryck för att skapa momentöverföring mellan fram- och bakaxel, och därför är en förståel-se för vad som påverkar detta tryck viktigt för utvecklingen. Skapandet av en simuleringsmo-dell av hela hydrauliken i kopplingen är ett sätt att förbättra denna förståelse. </p><p>I detta arbete har HOPSAN använts för att simulera hydrauliken i HLSC och även den meka-nik som påverkar hydrauliken. Fokus i arbetet har lagts på noggrannhet, numerisk stabilitet och prestanda. En manual för användning av modellen har skapats i HTML-format. </p><p>Simuleringarna har resulterat i en bra förståelse för vad som påverkar trycket i kopplingen, och utseendet på tryckkurvorna kan främst härröras till öppning av backventiler, töjning av kopplingshuset och rörelser hos kolvringarna. Reglerventilen är i och med sin stora öppnings-areagradient känslig för störningar, och strömningskrafter får stor inverkan på ventilläget. Al-ternativa kamprofiler för varvtalsskillnadspumpen har provats i simulering, och dessa har vi-sat sig ge mindre men snabbare tryckvariationer. Tröghet i ackumulatorn kan öka tryckvaria-tionerna vid höga varvtalsskillnader.</p>
2

Simulering av hydrauliken i Haldex-kopplingen / Simulation of the hydraulic system in HLSC

Söderlund, Martin, Öhman, Fredrik January 2005 (has links)
HLSC (Haldex Limited Slip Coupling) är en koppling för fyrhjulsdrift i personbilar, och för-finas ständigt för att ge en bättre funktion och körupplevelse. Kopplingen använder ett hyd-raultryck för att skapa momentöverföring mellan fram- och bakaxel, och därför är en förståel-se för vad som påverkar detta tryck viktigt för utvecklingen. Skapandet av en simuleringsmo-dell av hela hydrauliken i kopplingen är ett sätt att förbättra denna förståelse. I detta arbete har HOPSAN använts för att simulera hydrauliken i HLSC och även den meka-nik som påverkar hydrauliken. Fokus i arbetet har lagts på noggrannhet, numerisk stabilitet och prestanda. En manual för användning av modellen har skapats i HTML-format. Simuleringarna har resulterat i en bra förståelse för vad som påverkar trycket i kopplingen, och utseendet på tryckkurvorna kan främst härröras till öppning av backventiler, töjning av kopplingshuset och rörelser hos kolvringarna. Reglerventilen är i och med sin stora öppnings-areagradient känslig för störningar, och strömningskrafter får stor inverkan på ventilläget. Al-ternativa kamprofiler för varvtalsskillnadspumpen har provats i simulering, och dessa har vi-sat sig ge mindre men snabbare tryckvariationer. Tröghet i ackumulatorn kan öka tryckvaria-tionerna vid höga varvtalsskillnader.
3

On the Softmax Bottleneck of Word-Level Recurrent Language Models

Parthiban, Dwarak Govind 06 November 2020 (has links)
For different input contexts (sequence of previous words), to predict the next word, a neural word-level language model outputs a probability distribution over all the words in the vocabulary using a softmax function. When the log of probability outputs for all such contexts are stacked together, the resulting matrix is a log probability matrix which can be denoted as Q_theta, where theta denotes the model parameters. When language modeling is formulated as a matrix factorization problem, the matrix to be factorized Q_theta is expected to be high-rank as natural language is highly context-dependent. But existing softmax based word-level language models have a limitation of not being able to produce such matrices; this is known as the softmax bottleneck. There are several works that attempted to overcome the limitations introduced by softmax bottleneck, such as the models that can produce high-rank Q_theta. During the process of reproducing the results of these works, we observed that the rank of Q_theta does not always positively correlate with better performance (i.e., lower test perplexity). This puzzling observation triggered us to conduct a systematic investigation to check the influence of rank of Q_theta on better performance of a language model. We first introduce a new family of activation functions called the Generalized SigSoftmax (GSS). By controlling the parameters of GSS, we were able to construct language models that can produce Q_theta with diverse ranks (i.e., low, medium, and high ranks). For models that use GSS with different parameters, we observe that rank does not have a strong positive correlation with perplexity on the test data, reinforcing the support of our initial observation. By inspecting the top-5 predictions made by different models for a selected set of input contexts, we observe that a high-rank Q_theta does not guarantee a strong qualitative performance. Then, we conduct experiments to check if there are any other additional benefits in having models that can produce high-rank Q_theta. We expose that Q_theta rather suffers from the phenomenon of fast singular value decay. Additionally, we also propose an alternative metric to denote the rank of any matrix known as epsilon-effective rank, which can be useful to approximately quantify the singular value distribution when different values for epsilon are used. We conclude by showing that it is the regularization which has played a positive role in the performance of these high-rank models in comparison to the chosen baselines, and there is no single model yet which truly gains improved expressiveness just because of breaking the softmax bottleneck.
4

A Study of Air Suspended AWD Trucks / En studie av luftfjädrade allhjulsdrivna lastbilar

Andersson, Jacob, Danielsson, Fredrik January 2019 (has links)
Currently, Scania is not offering full air suspended AWD trucks, which it seems to be a demand for. This study acts as a first step to fulfill this demand. Including, a benchmarking of what competitors offer as well as an investigation and an evaluation of Scania’s current suspension system. Moreover, a requirement specification and a concept generation for a front air suspension system on AWD trucks have been presented. Eight concept were generated, where two were chosen for further study of design, force analysis and roll gradient analysis. It was concluded that there is a market for this configuration, however, implementing it would require extensive design work. / I nuläget erbjuder inte Scania luftfjädring för samtliga hjulaxlar på AWD lastbilar, vilket det tycks finnas ett kundbehov av. Denna studie agerar som ett initialt steg till att uppfylla detta kundbehov. Studien inkluderar inledningsvis en analys av vad konkurrenter erbjuder samt en undersökning och utvärdering av Scanias nuvarande fjädringssystem. Utöver det, har en kravspecifikation och en konceptgenerering för främre luftfjädring på AWD lastbilar presenterats. Åtta stycken koncept genererades, varav två stycken valdes för vidare studie av design, kraftanalys samt krängstyvhetsanalys. Slutsatserna var att det finns en marknad för denna typ av konfiguration, dock skulle det behövas omfattande designarbete för att implementera det.
5

Evaluation of alternate wetting and drying irrigation management in rice

Atwill, Richard Lee, II 10 December 2021 (has links)
Water level declines in the Mississippi River Valley Alluvial Aquifer (MRVAA) are attributed largely to withdrawals for rice (Oryza sativa L.) irrigation. This study was performed to determine if alternative irrigation strategies for rice could reduce withdrawal from the MRVAA without having an adverse effect on grain yield, grain quality, control of barnyardgrass, and profitability. Research was conducted in Stoneville, MS and 19 on-farm locations across the Delta region of Mississippi from 2014 through 2017 to determine the irrigation threshold for alternate wetting and drying (AWD) rice irrigation, the effect of AWD management on barnyardgrass control, and effects of irrigation water management practice, i.e., conventional flood via cascade (CONV), multiple side inlet (MSI), and MSI coupled with AWD, on aquifer withdrawal, rough rice grain yield, irrigation water use efficiency (IWUE), and net returns above irrigation costs. An AWD threshold of -20 cm below the soil surface had no adverse effect on grain yield or grain quality, reduced irrigation applied by 50%, and improved IWUE by 45% compared to a continuous flood (CF). Control of barnyardgrass in AWD was either maintained or improved compared to CF for both Clearfield and conventional rice production systems. At the production scale, up to 39% less water was applied to AWD compared to CONV and MSI. Rice grain yield for AWD was not different from either CONV or MSI, despite substantial reductions in water use. Relative to standard irrigation strategies, AWD maintained or increased net returns up to $238 ha-1 for pumping depths from 5.5 m to 122 m and diesel prices from $0.42 L-1 to $0.98 L-1. Irrigation water use efficiency was up to 59% greater for AWD relative to conventional systems due to the positive effects of the former on water use while maintaining yield. These data demonstrate that AWD can reduce withdrawal from the MRVAA while maintaining or improving yield and net returns relative to irrigation strategies currently employed across the midsouthern USA rice belt.
6

Evaluations of Vibrations in a Wet Clutch

Sandlund, David, Wintercorn, Oskar January 2019 (has links)
BorgWarner Powerdrive Systems is constantly developing the performance of wet clutches used in passenger car all-wheel drive systems. The Haldex limited slip coupling, LSC, is the trade name of the all-wheel drive system sold and developed by BorgWarner Powerdrive Systems. In a primary front-wheel driven vehicle, the Haldex LSC can transfer torque to the rear axle based on sensor input with full electronic control and can thus work seamlessly together with other systems such as traction and stability control. In the design of such an all-wheel drive system; it is critical to avoid issues with drive line vibrations as well as the accompanying noise generation. This is a complex issue and even though the goal is to avoid these problems, they may still occur to a certain degree. BorgWarner now wants to investigate whether changes in the friction disc quality may affect the occurrence of vibrations. The friction disc quality could e.g. be described in terms of variations in height, material composition, material porosity and Young's modulus with the variations distributed around the circumferential of the friction disc. This study is however limited to investigate if a difference in height could be the cause of drive line vibrations. The goal is to determine if there is a correlation between a shifting thickness around the circumferential of the friction disc and the occurrence of vibrations. With the help from RISE Sicomp and their 3D-scanner it was possible to determine the difference in height around the circumference of the disc. The discs was scanned and then analyzed with the help of GOM-software. When the height was measured around the disc they were exposed to a run-in, this with the use of an LSC test rig. This way it is possible to see how the friction characteristics changes while it is being used and to later see if the height difference has changed. All this to see the correlation between the difference in height around the disc and the friction characteristics. A micro tomography scanner at LTU was used to section through the disc. It uses x-ray and makes it possible to look at sections all through the disc to see if there is a difference in the strucure of certain areas. If one pillow is more porous then another one. Based solely on the tomography test it is hard explaining the difference in Young’s modulus, the result showed little to none difference between different areas of the disc. With the help from 3D-scanning it has been shown that there is in fact a height difference. That difference becomes smaller with time when used, this due to the wearing of the highest area being greater than that of a lower area. The run-in seems to always have a positive result on the disc. Friction measurements during run-in showed that also a disc with small differences in height could display unfavorable friction characteristics. This would imply that the height difference matters but is not the only contributing factor to vibrations. Even though the difference in thickness of the friction disc has shown to contribute to vibrations, there are still factors that remains unclear. If the height would have been the only factor the friction measurements would support this more than what the actual case is. The other factors need further examination.
7

On The Avalanche Properties Of Misty1, Kasumi And Kasumi-r

Akleylek, Sedat 01 February 2008 (has links) (PDF)
The Global System for Mobile (GSM) Communication is the most widely used cellular technology. The privacy has been protected using some version of stream ciphers until the 3rd Generation of GSM. KASUMI, a block cipher, has been chosen as a standard algorithm in order to be used in 3rd Generation. In this thesis, s-boxes of KASUMI, MISTY1 (former version of KASUMI) and RIJNDAEL (the Advanced Encryption Standard) are evaluated according to their linear approximation tables, XOR table distributions and satisfaction of the strict avalanche criterion (SAC). Then, the nonlinear part, FI function, of KASUMI and MISTY1 are investigated for SAC. A new FI function is defined by replacing both s-boxes of KASUMI by RIJNDAEL&rsquo / s s-box. Calling this new version KASUMI-R, it is found to have an FI function significantly better than others. Finally, the randomness characteristics of the overall KASUMI-R for different rounds are compared to those of MISTY1 and KASUMI, in terms of avalanche weight distribution (AWD) and some statistical tests. The overall performance of the three ciphers is found to be same, although there is a significant difference in their FI functions.
8

Fuel Efficiency in AWD-system

Fredriksson, Robert, Trkulja, Milovan January 2008 (has links)
This degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates coordinates and angles on a propeller shaft and to investigate the possibilities to put together a simplified formula that calculates the natural frequencies on a propeller shaft. The main parts of this report are a compilation of the theory about AWD and mostly about the parts on the propeller shaft, and also a description of the developed computer program called Propeller Shaft Calculator. This report doesn’t concern power losses in the different joints because there were no such general equations to be found. The most common way to calculate the power losses inside a joint is to do tests were the power loss is measured at different angles, torque and speed and then use that data to put together an approximated equation. Most of the work on this project has been on theory studies and on programming. The main result of the project is the program Propeller Shaft Calculator. Propeller Shaft Calculator is a program that is designed in Microsoft Excel. All the menus are programmed in the visual basic editor in Excel. The program is supposed to be used as a help while designing new propeller shafts. Propeller Shaft Calculator can calculate all the coordinates, lengths, angles and directions on a propeller shaft. It also calculates natural frequencies, plunge, estimated power loss on the second shaft and angles in the joints. In the program you can choose to do calculations on four different configurations of propeller shafts but can quite easy upgrade the program with more choices. Basically the program works like this: First you choose the right propeller shaft in the main menu. Then you fill out the indata sheet with coordinates, lengths, material data and so on. As you type in the input data the output data will appear in the out-data sheet next to the in-data. Every propeller shaft has also a calculations sheet were more detailed calculations can be found. The program also has a built in help function and a warning function that lights a warning sign next to the values if they are outside the limits.
9

Fuel Efficiency in AWD-system

Fredriksson, Robert, Trkulja, Milovan January 2008 (has links)
<p>This degree project has been made in cooperation with engineers working for GM Engineering/Saab Automobile AB in Trollhättan. The given name by Saab for the project is “Fuel efficiency improvements in All Wheel Drive(AWD)-system”. The main tasks of this thesis work were to investigate the size of the power losses in different parts on the propeller shaft, to design a computer program that calculates</p><p>coordinates and angles on a propeller shaft and to investigate the possibilities to put together a simplified formula that calculates the natural frequencies on a propeller shaft.</p><p>The main parts of this report are a compilation of the theory about AWD and mostly about the parts on the propeller shaft, and also a description of the developed computer program called Propeller Shaft Calculator. This report doesn’t concern power losses in the different joints because there were no such general equations to be found. The most common way to calculate the power losses inside a joint is to do tests were the power loss is measured at different angles, torque and speed and then use that data to put together an approximated equation.</p><p>Most of the work on this project has been on theory studies and on programming. The main result of the project is the program Propeller Shaft Calculator.</p><p>Propeller Shaft Calculator is a program that is designed in Microsoft Excel. All the menus are programmed in the visual basic editor in Excel. The program is supposed to be used as a help while designing new propeller shafts.</p><p>Propeller Shaft Calculator can calculate all the coordinates, lengths, angles and directions on a propeller shaft. It also calculates natural frequencies, plunge, estimated power loss on the second shaft and angles in the joints. In the program you can choose to do calculations on four different configurations of propeller shafts but can quite</p><p>easy upgrade the program with more choices.</p><p>Basically the program works like this:</p><p>First you choose the right propeller shaft in the main menu. Then you fill out the indata sheet with coordinates, lengths, material data and so on. As you type in the input data the output data will appear in the out-data sheet next to the in-data. Every propeller shaft has also a calculations sheet were more detailed calculations can be</p><p>found.</p><p>The program also has a built in help function and a warning function that lights a warning sign next to the values if they are outside the limits.</p>
10

Control System and Simulation Design for an All-Wheel-Drive Formula SAE Car Using a Neural Network Estimated Slip Angle Velocity

Beacock, Benjamin 12 September 2012 (has links)
In 2004, students at the University of Guelph designed and constructed an all-wheel-drive Formula SAE vehicle for competition. It utilized an electronically-controlled, hydraulic-actuated limited slip center coupling from Haldex Traction Ltd, to transfer torque to the front wheels. The initial control system design was not comprehensively conceived, so there was a need for a thoroughly developed control system for the all-wheel-drive actuator augmented with commonly available sensors and a low cost controller. This thesis presents a novel all-wheel-drive active torque transfer controller using a neural network estimated slip angle velocity. This controller specifically targets a racing vehicle by allowing rapid direction changes for maneuverability but damping slip angle changes for increased controllability. The slip angle velocity estimate was able to track the actual simulated value it was trained against with excellent phase matching but with some offsets and phantom spikes. Using the estimated slip angle velocity for control realized smooth control output, excellent stability, and a fast turn-in yaw response on par with rear-wheel-drive configurations. A full vehicle simulation with software-in-the-loop testing for control software was also developed to aid the system design process and avoid vehicle run time for tuning. This design flow should significantly decrease development time for controls algorithm work and help increase innovation within the team.

Page generated in 0.0302 seconds