• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Regulation of the human neuronal nitric oxide synthase gene via alternate promoters

Hartt, Gregory Thomas 15 October 2003 (has links)
No description available.
22

Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve Injury

Wilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome. Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires. Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires. En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma. In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95. In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95. In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
23

Chemical biology studies of neuroregenerative small molecules using Caenorhabditis elegans

Zlotkowski, Katherine Hannah 03 September 2015 (has links)
The debilitating effects of spinal cord injury can be attributed to a lack of regeneration in the central nervous system. Identification of growth-promoting pathways, particularly ones that can be controlled by small molecules, could provide significant advancements in regenerative science and lead to potential treatments for spinal cord injury. The biological investigations of neuroregenerative small molecules, specifically the natural products clovanemagnolol and vinaxanthone, have been expanded to a whole organism context using the nematode Caenorhabditis elegans (C. elegans) as a tool for these studies. A straightforward assay using C. elegans was developed to screen for compounds that promote neuronal outgrowth in vivo. This outgrowth assay was then used to guide the design of chemically edited analogs of clovanemagnolol that maintained biological activity while possessing structures amenable to further modification for mechanism of action studies. Pull-down experiments using affinity reagents synthesized from a neuroactive structural derivative, clovanebisphenol, and the C. elegans proteome combined with mass spectrometry-based protein identification and genetic recapitulation using mutant C. elegans identified the putative protein target of the small molecule as a kinesin light chain, KLC-1. Furthermore, the small molecule-promoted regeneration of injured neurons in vivo was studied using laser microsurgery to cut specific axons in C. elegans followed by treatment with a library of analogs of the growth-promoting natural product vinaxanthone. Enhanced axonal regeneration was observed following small molecule treatment and the results were used to determine the structure-activity relationship of vinaxanthone, which may guide future development of potential drug candidates for the treatment of spinal cord injury. / text
24

Role of the ASPP Family in the Regulation of p53-Mediated Apoptotic Death of Retinal Ganglion Cells after Optic Nerve Injury

Wilson, Ariel M. 02 1900 (has links)
Le glaucome est la première cause de cécité irréversible à travers le monde. À présent il n’existe aucun remède au glaucome, et les thérapies adoptées sont souvent inadéquates. La perte de vision causée par le glaucome est due à la mort sélective des cellules rétiniennes ganglionnaires, les neurones qui envoient de l’information visuelle de la rétine au cerveau. Le mécanisme principal menant au dommage des cellules rétiniennes ganglionnaires lors du glaucome n’est pas bien compris, mais quelques responsables putatifs ont été proposés tels que l’excitotoxicité, le manque de neurotrophines, la compression mécanique, l’ischémie, les astrocytes réactifs et le stress oxidatif, parmis d’autres. Indépendamment de la cause, il est bien établi que la perte des cellules rétiniennes ganglionnaires lors du glaucome est causée par la mort cellulaire programmée apoptotique. Cependant, les mécanismes moléculaires précis qui déclenchent l’apoptose dans les cellules rétiniennes ganglionnaires adultes sont mal définis. Pour aborder ce point, j’ai avancé l’hypothèse centrale que l’identification de voies de signalisations moléculaires impliquées dans la mort apoptotique des cellules rétiniennes ganglionnaires offrirait des avenues thérapeutiques pour ralentir ou même prévenir la mort de celles-ci lors de neuropathies oculaires telles que le glaucome. Dans la première partie de ma thèse, j’ai caractérisé le rôle de la famille de protéines stimulatrices d’apoptose de p53 (ASPP), protéines régulatrices de la famille p53, dans la mort apoptotique des cellules rétiniennes ganglionnaires. p53 est un facteur de transcription nucléaire impliqué dans des fonctions cellulaires variant de la transcription à l’apoptose. Les membres de la famille ASPP, soit ASPP1, ASPP2 et iASPP, sont des protéines de liaison de p53 qui régulent l’apoptose. Pourtant, le rôle de la famille des ASPP dans la mort des cellules rétiniennes ganglionnaires est inconnu. ASPP1 et ASPP2 étant pro-apoptotiques, l’hypothèse de cette première étude est que la baisse ciblée de ASPP1 et ASPP2 promouvrait la survie des cellules rétiniennes ganglionnaires après une blessure du nerf optique. Nous avons utilisé un modèle expérimental bien caractérisé de mort apoptotique neuronale induite par axotomie du nerf optique chez le rat de type Sprague Dawley. Les résultats de cette étude (Wilson et al. Journal of Neuroscience, 2013) ont démontré que p53 est impliqué dans la mort apoptotique des cellules rétiniennes ganglionnaires, et qu’une baisse ciblée de ASPP1 et ASPP2 par acide ribonucléique d’interference promeut la survie des cellules rétiniennes ganglionnaires. Dans la deuxième partie de ma thèse, j’ai caractérisé le rôle d’iASPP, le membre anti-apoptotique de la famille des ASPP, dans la mort apoptotique des cellules rétiniennes ganglionnaires. L’hypothèse de cette seconde étude est que la surexpression d’iASPP promouvrait la survie des cellules rétiniennes ganglionnaires après axotomie. Mes résultats (Wilson et al. PLoS ONE, 2014) démontrent que le knockdown ciblé de iASPP exacerbe la mort apoptotique des cellules rétiniennes ganglionnaires, et que la surexpression de iASPP par virus adéno-associé promeut la survie des cellules rétiniennes ganglionnaires. En conclusion, les résultats présentés dans cette thèse contribuent à une meilleure compréhension des mécanismes régulateurs sous-jacents la perte de cellules rétiniennes ganglionnaires par apoptose et pourraient fournir des pistes pour la conception de nouvelles stratégies neuroprotectrices pour le traitement de maladies neurodégénératives telles que le glaucome. / Glaucoma is the leading cause of irreversible blindness worldwide. At present, there is no cure for glaucoma, and current therapies are often inadequate. Loss of vision in glaucoma results from the death of retinal ganglion cells, the neurons that send visual information from the retina to the brain. The principal mechanism leading to retinal ganglion cell damage during glaucoma is not well understood, however, putative culprits have been proposed including excitotoxicity, neurotrophin deprivation, mechanical compression, ischemia, reactive astrocytes and oxidative stress. It is well established that retinal ganglion cell loss during glaucoma is caused by apoptotic programmed cell death, however, the precise mechanisms that lead to apoptotic death of adult retinal ganglion cells are poorly defined. To address this point, I put forth the central hypothesis that the identification of signaling pathways involved in apoptotic retinal ganglion cell death would offer therapeutic avenues to slow or prevent retinal ganglion cell death during ocular neuropathies such as glaucoma. In the first part of my thesis, I characterised the role of Apoptosis Stimulating Protein of p53 family (ASPP) proteins, which are regulators of p53, in the apoptotic death of retinal ganglion cells. p53 is a nuclear transcription factor implicated in cellular functions ranging from transcription to apoptosis. ASPP family members ASPP1, ASPP2 and iASPP are p53 binding proteins that belong to a family of protein regulators of p53-dependent apoptotic death. However, the role of ASPP family members in retinal ganglion cell death is unknown. As ASPP1 and ASPP2 are pro-apoptotic, the hypothesis of our first study was that the knockdown of ASPP1 and ASPP2 gene expression would lead to retinal ganglion cell survival after an optic nerve lesion. We used a well-characterized experimental model of neuronal apoptosis induced by optic nerve axotomy in Sprague Dawley rats. The results of this study (Wilson et al. Journal of Neuroscience, 2013) demonstrated that p53 is implicated in retinal ganglion cell death, and that targeted knockdown of ASPP1 and ASPP2 by short interference ribonucleic acid promotes retinal ganglion cell survival. The knockdown of ASPP2 correlates with a reduction in the levels of pro-apoptotic p53 regulated targets PUMA and Fas/CD95. In the second part of my thesis, I characterized the role of the anti-apoptotic member of the ASPP family, iASPP, in the apoptotic death of retinal ganglion cells. The hypothesis of this second study is that the overexpression of iASPP would promote retinal ganglion cell survival after axotomy. The data (Wilson et al. PLoS ONE, 2014) demonstrate that the targeted knockdown of iASPP by short interference ribonucleic acid exacerbates retinal ganglion cell death, and that the overexpression of iASPP by adeno-associated virus promotes retinal ganglion cell survival. The overexpression of iASPP correlates with a reduction in protein levels of PUMA and Fas/CD95. In conclusion, the findings presented in this thesis contribute to a better understanding of the pathological mechanisms underlying retinal ganglion cell loss by apoptosis and might provide insights into the design of novel neuroprotective treatments for neurodegenerative diseases such as glaucoma.
25

Impacto da ausência do interferon gama na plasticidade sináptica após lesão do nervo isquiático / Interferon of impact gamma in the of synaptic plasticity after sciatic nerve lesion

Victorio, Sheila Cristina da Silva 17 August 2018 (has links)
Orientador: Alexandre Leite Rodrigues de Oliveira / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-17T18:11:52Z (GMT). No. of bitstreams: 1 Victorio_SheilaCristinadaSilva_D.pdf: 20891355 bytes, checksum: a0e7d9b08b387848f356367e4f3c8d86 (MD5) Previous issue date: 2011 / Resumo: Na medula espinal, o estabelecimento das sinapses é, provavelmente, coordenado pelos próprios neurônios. Contudo, as células da glia circunjacentes e o microambiente formado entre neurônios/glia, desempenham papel importante na modulação da excitabilidade neural, influenciando na transmissão e plasticidade sináptica. Em situações de injúria ou inflamação, há um aumento da reatividade glial e mudança do estado funcional dos neurônios, levando a uma consequente cascata de eventos visando a homeostase do tecido. Neste sentido, o IFN? está envolvido na regulação da expressão do MHC I, o qual tem recentemente mostrado exercer um papel importante nos processos de plasticidade sináptica após axotomia. Além disso, existem evidências de que o IFN? pode interferir na diferenciação e sobrevivência das células neurais. No entanto, pouco se sabe sobre os efeitos da ausência do IFN? nos neurônios espinais após lesão. Portanto, o objetivo deste trabalho foi investigar os fenômenos de plasticidade sináptica e da reatividade glial em camundongos mutantes para IFN?, a fim de analisar a dinâmica das sinapses na medula após a lesão do nervo isquiático em animais incapazes de regular a expressão de MHC I pela produção de IFN?. Para isso, camundongos mutantes para IFN? e do tipo selvagem C57BL/6J foram submetidos à transecção ou esmagamento unilateral do nervo isquiático (5animais/grupo/experimento) e o material foi processado para imunohistoquímica, Western blotting, microscopia de luz e de transmissão (MET). Além disso, a avaliação motora dos animais também foi investigada por meio do índice funcional do nervo isquiático. Secções da medula espinal de camundongos sem lesão foram também utilizados para análise de sobrevivência neuronal e presença de apoptose por TUNEL e imunomarcação para caspase 3. Camundongos neonatos foram utilizados para os experimentos com cultura primária de astrócitos. A ausência do IFN? nos animais mutantes levou à redução da expressão de MHC I após uma semana de lesão. Os motoneurônios encontrados no corno ventral destes animais exibiram menor tamanho do soma e maior número de células degeneradas comparado aos animais selvagens. A perda neuronal não foi agravada pela axotomia do nervo isquiático nos animais mutantes. A morte por apoptose foi sugerida baseado nos resultados positivos para TUNEL e caspase 3. A análise ultraestrutural mostrou menor retração de terminais sinápticos nos animais mutantes uma semana após lesão periférica. Além disso, a ausência do IFN? não prejudicou a recuperação motora dos animais mutantes. Em cultura, os astrócitos dos animais mutantes mostraram um atraso na taxa de proliferação provavelmente em razão da ausência do IFN?. Com base nestes resultados, sugerimos que o IFN? pode exercer um papel neuroprotetor e que sua ausência resulta na morte neuronal, a qual não é agravada pela lesão periférica. / Abstract: In the spinal cord, the establishment of synapses is probably coordinated by the neurons. However, the glial cells and surrounding microenvironment formed between neurons/glia play an important role in modulating neural excitability, influencing the transmission and synaptic plasticity. In situations of injury or inflammation, there is an increase in glial reactivity and changes in functional status of neurons, with a consequent cascade of events aimed at restoration of homeostasis. In this regard, IFN? is involved in regulating the expression of MHC I, which has recently been shown to play an important role in the synaptic plasticity processes following axotomy. Also, there is evidence that IFN? absence on spinal cord neurons after injury. The aim of this study was to investigate the phenomena of synaptic plasticity and glial reactivity in mice mutant for IFN? in order to analyze the dynamics of spinal synapses after injury of the sciatic nerve in animals unable to regulate the expression of MHC I due the absence of IFN?. In this sense, mutant mice for IFN? and wild type C57BL/6J were subjected to unilateral transection or crushing of the sciatic nerve (5animals/group/experiment), and the specimens were processed for immunohistochemistry, Western blotting, light and transmission electron microscopy (TEM). In addition, the motor evaluation of the mice was investigated by the sciatic functional index. Spinal cord sections from non-lesioned animals were also used to investigate neuronal survival and the presence of apoptosis with TUNEL and caspase 3 immunostaining. Astrocytes from mutant and wild type newborn mice were also investigated in primary cell culture. The absence of IFN? in the mutant animals produced reduced expression of MHC I after one week from injury. Motoneurons in the lower lumbar ventral horn exhibited a smaller soma size and increased number of degenerated cells?when compared to wild type mice. Sciatic nerve axotomy did not further aggravate the neuronal loss in the mutant mice. Apoptotic death is suggested on TUNEL and caspase 3 positive immunostaining. The electron microscopy showed a smaller retraction of pre-synaptic terminals apposing to motoneurons in mutant mice one week after lesion. The absence of IFN? did not impair motor recovery of the mutant animals. In culture, astrocytes from mutant animals showed a delay in the rate of proliferation probably due to the absence of IFN?. Altogether, these results suggest that IFN? may be neuroprotective and its absence results in neuronal death, which is not further increased by peripheral axotomy. / Doutorado / Biologia Celular / Doutor em Biologia Celular e Estrutural
26

Retrograde influences of peripheral nerve injury on uninjured neurons

Hawk, Kiel W. 19 December 2013 (has links)
No description available.
27

La régénération axonale suivant l'axotomie du nerf sciatique et stimulation électrique directe et transcutanée chez la souris

Pion, Anne-Marie J. 08 1900 (has links)
La stimulation électrique directe (SED), pour une heure, améliore la régénération de nerfs périphériques chez le rat après la réparation. Cliniquement, ceci augmenterait le temps opératoire, rehaussant les risques de complications périopératoires. Objectif: Cette étude examine si la stimulation électrique transcutanée (SETC) est aussi efficace à améliorer la régénération de nerfs périphériques que la stimulation électrique directe. Méthode: Le nerf sciatique droit de 28 souris a été axotomisé. Une réparation par microsuture est effectuée. Quatre groupes sont étudiés : (1) sham; (2) suture seulement; (3) suture et SED; (4) suture et SETC. La stimulation est appliquée pour 1 heure à 20 Hz. Les souris sont étudiées pour un total de 12 semaines. La récupération sciatique est évaluée aux semaines 0, 1, 2 et aux 2 semaines par la suite par analyse de démarche sur la poutre. Résultats: La cinématique post-récupération démontre un index fonctionnel sciatique et angle de décollement significativement améliorés pour les groupes SED et SETC aux semaines 8, 10 et 12. Conclusions: 12 semaines après l’axotomie du nerf sciatique, la récupération fonctionnelle est significativement améliorée avec la SED et la SETC. Donc, la SETC est aussi bénéfique pour la promotion de la régénération nerveuse et réinnervation musculaire fonctionnelle que la SED. / Direct electrical stimulation (DES) for one hour increases the rate of peripheral nerve regeneration in rats after nerve repair. Clinically, this would lengthen surgery time, increasing risks of perioperative complications. Purpose: This study examines whether transcutaneous electrical stimulation (TCES) is as effective at improving peripheral nerve regeneration as direct electrical stimulation. Methods: The right sciatic nerve was axotomized in 28 mice. End-to-end microsuture repair was undertaken. Four groups were studied: (1) sham; (2) suture only; (3) suture and DES; (4) suture and TCES. Stimulation was applied for 1 hour, at 20 Hz. The mice were studied for a total of 12 weeks. Hind-limb recovery was evaluated at weeks 0, 1, 2 and then every 2 weeks by walking-track analysis. Results: Post recovery kinematic showed significantly improved functional sciatic index and foot-base angles at weeks 8, 10 and 12 for both DES and TCES groups. Conclusions: 12 weeks after sciatic nerve axotomy, functional recovery was improved significantly in both DES and TCES groups. Therefore, TCES is as beneficial in promoting nerve regeneration and functional muscle reinnervation as is DES.
28

Morphologische Veränderungen im Nucleus nervi facialis und im Motorkortex adulter Ratten nach Durchtrennung des Nervus facialis / Morphological changes in the facial nucelaus and in the motor cortex of adult rats following transection of the facial nerve

Bonnemann, Catharina 12 October 2011 (has links)
No description available.
29

Efeito da secção do nervo isquiático sobre parâmetros ultraestrutural, histoquímico, imunoistoquímico e de captação de análogos da glicose em gânglio da raiz dorsal de rãs Lithobates catesbianus

Rigon, Fabiana January 2013 (has links)
As rãs são utilizadas como modelos experimentais em diferentes situações experimentais. Uma delas é o estudo dos efeitos da seção do nervo isquiático (SNI) sobre o tecido nervoso. Essa ampla utilização desses animais como modelos experimentais justifica a realização de estudos que visam o conhecimento morfofuncional de seus tecidos. Inúmeros estudos mostram que, assim como nos mamíferos, o principal substrato energético no tecido nervoso de rãs é a glicose. Porém, é desconhecida a distribuição dos transportadores de glicose no tecido nervoso de rãs, bem como se a SNI altera esse transporte. Outra questão em aberto é se o lactato, cuja concentração está aumentada no plasma de rãs durante períodos de hibernação e após atividades motoras, é usado como substrato energético pelo tecido nervoso, o que está demonstrado em outras espécies de vertebrados. É desconhecida ainda no gânglio da raiz dorsal (GRD) de rãs a distribuição e os efeitos da SNT sobre a reação à nicotinamida adenina dinucleotídeo fosfato diaforase (NADPH-diaforase), enzima considerada equivalente a óxido nítrico sintase, responsável pela síntese de óxido nítrico, e a reação ao ácido periódico-reativo de Schiff (PAS), que indica a presença de mucopolissarídeos, incluindo o glicogênio, uma importante reserva energética no tecido nervoso de rãs. Desconhece-se também a distribuição e os efeitos da SNT sobre a imunorreatividade à serotonina, importante molécula com função neurotransmissora e/ou moduladora no sistema nervoso, tirosina hidroxilase, enzima limitante na síntese de catecolaminas, moléculas com diversos papéis fisiológicos, incluindo ação neurotransmissora e/ou neuromoduladora no tecido nervoso, e c-Fos, proteína considerada marcadora de ativação neural por estimulação nociva. Outras questões ainda em aberto são os efeitos da SNT sobre: a captação do análogo da glicose 1-14C 2-deoxi-D-glicose (14C-2-DG) e concentração plasmática de glicose e lactato; se os tipos II e III de células gliais satélites (CGSs), recentemente descritas no GRD de coelho, estão presentes nesse gânglio de rãs; e os efeitos da SNT sobre a ultraestrutura de CGSs e neurônios do GRD. Assim, o objetivo dessa tese foi determinar: 1) a ultraestrutura de neurônios e CGSs; 2) a distribuição das reações à NADPH-diaforase e PAS, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose tipo 1 e 3; e 3) a captação de 14C-2-DG, na presença e ausência de lactato, em GRD de rãs Lithobates catesbianus com e sem SNI. A escolha pelos transportadores de glicose tipos 1 e 3 foi pelo fato de ocorrerem na membrana de endotélio, células gliais e de neurônios. Para a realização do estudo inicialmente 12 rãs Lithobates catesbianus, adultas, machos, com peso de 100-200g, que não sofreram qualquer manipulação cirúrgica foram mortas por decapitação e os gânglios das raízes dorsais (GRDs) do nervo isquiático retirados e preparados para análises ultraestrutural, histoquímica à NADPH-diaforase e PAS, e imunoistoquímica à serotonina, tirosina hidroxilase e transportadores de glicose dos tipos 1 e 3. Feito isso, 18 outras rãs, nas mesmas condições físicas, foram divididas em três grupos experimentais (n=6/grupo): controle (rãs que não sofreram qualquer manipulação cirúrgica), sham (rãs onde foram efetuados apenas os procedimentos para isolamento do nervo isquiático) e SNI (rãs que tiveram o nervo isquiático direito totalmente seccionado em seu tronco comum). Esses animais foram mortos três dias após a intervenção cirúrgica e seus GRDs do nervo isquiático usados para demonstrar os efeitos da secção nervosa sobre a ultraestrutura, a reação à NADPH-diaforase, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose dos tipos 1 e 3 no GRD. Outros 20 animais, divididos nos mesmos grupos experimentais, foram usados para demonstrar os efeitos da SNI sobre a captação de 14C-2-DG, na presença ou ausência de lactato, e a taxa de produção de 14CO2 a partir de 14C-L-lactato e de 14C-glicose no GRD. Essas rãs foram usadas ainda para demonstrar os efeitos da denervação periférica sobre a concentração plasmática de glicose e lactato. Nossos resultados mostraram que os neurônios sensoriais do GRD de rã Lithobates catesbianus tiveram distribuição, diâmetro e morfologia que foi similar àquela descrita para essas células em gânglio de mamíferos. As CGSs apresentaram morfologia similar àquela descrita para essas células em gânglios de outras espécies de vertebrados. As células dos tipos II e III, observadas no GRD de coelho, não ocorreram no GRD de Lithobates catesbianus. O padrão de atividade à NADPH-diaforase e a distribuição da imunorreatividade à serotonina, tirosina hidroxilase e Glut 1 e 3 foram também similares ao descrito em mamíferos. Pela primeira vez foi demonstrada, em anfíbios, a presença de reação à NADPH-diaforase em CGCs do GRD. A captação de 14C-2-DG foi reduzida quando o lactato foi acrescentado ao meio de incubação. As alterações induzidas pela SNI foram também similares àquelas descritas nos mamíferos. Houve acréscimo no número de mitocôndrias, retículo endoplasmático, ribossomas e filamentos no citoplasma das CGSs, mais neurônios e CGCs com reação positiva à NADPH-diaforase, um maior número de prolongamentos imunorreativos à tirosina hidroxilase em torno de somas de neurônios sensoriais, e mais núcleos neuronais imunorreativos a c-Fos. Nenhuma alteração ocorreu na imunorreatividade a serotonina e transportadores de glicose. Houve aumento na captação de 14C-2-DG, que foi reduzido quando o lactato foi acrescentado ao meio de incubação. Porém, a formação de 14CO2 a partir de 14C-L-lactato e de 14C-glicose não alterou nessas condições. Todavia, diferentemente dos mamíferos, a SNI não provocou mudança no número de CGCs no GRD, mostrando uma peculiaridade na resposta das rãs à SNI. Assim, nosso estudo reforça o uso de rãs como modelo experimental para estudo dos efeitos da SNI, um modelo de dor fantasma, sobre o tecido nervoso. Porém, dada a diferença peculiar ocorrida no GRD de rãs com SNI, é evidente a necessidade de mais conhecimento dos efeitos dessa situação experimental nesses animais. / Frogs have been used as experimental models in different experimental situations. One of these is the study of the effects of the sciatic nerve transection (SNT) on the nerve tissue. The wide use of these animals as experimental models justifies the studies aimed at morphofunctionally understanding of their tissues. Numerous studies have shown that glucose is the main energy substrate in the nerve tissue of frogs as well as in mammals. However, the distribution of glucose transporters in the nerve tissue of frogs is unknown as well as whether SNT alters such transportation. Another unanswered question is whether the lactate, whose concentration is increased in the frog plasma during hibernation periods and after motor activities, is used as an energy substrate by the nerve tissue, which has been demonstrated in other vertebrate species. In the dorsal root ganglion (DRG) cells of frogs are still unknown the distribution and effects of SNT on the reaction of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase), an enzyme that is considered equivalent to nitric oxide synthase, responsible for the synthesis of nitric oxide, and on the reaction of periodic acid-Schiff (PAS), which indicates the presence of mucopolysaccharides, including glycogen, an important energy reserve in frog nerve tissue. Moreover, the distribution and effects of SNT on immunoreactivity to serotonin, an important molecule that functions as a neurotransmitter and / or neuromodulator in the nervous system, tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, molecules with various physiological roles, including neurotransmitter and / or neuromodulator action in the nerve tissue, and c-Fos, a protein that is regarded as a marker of neuronal activation by noxious stimulation are also unknown. Other questions regarding is the effect of SNT on the uptake of glucose analogue 2-Deoxy-D-glucose-1-14C (14C-2-DG) and glucose and lactate concentration plasma; whether the types II and III of satellite glial cells (SGCs), recently described in rabbit DRG, are present in this ganglion of frogs; and the effects of SNT on the ultrastructure of SGCs and DRG neurons remain unanswered as well. Thus, this thesis aimed to determine: 1) the ultrastructure of neurons and SGCs; 2) the distribution of NADPH-diaphorase and PAS reaction, and immunohistochemistry for serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3; and 3) the uptake of 2-DG-14C, in the presence and absence of lactate, in DRG of frogs, Lithobates catesbianus, with and without SNT. Glucose transporters types 1 and 3 were chosen because they occur in the membrane of endothelial cells, glial cells and neurons. Initially, 12 adult male frogs, Lithobates catesbianus, weighing 100-200g, not having undergone any previous surgical manipulation, were killed by decapitation. The DRGs of the sciatic nerve were removed and prepared for ultrastructural analysis, histochemistry of NADPH-diaphorase and PAS, and immunohistochemistry for serotonin, tyrosine hydroxylase and glucose transporters types 1 and 3. After that, 18 other frogs in the same physical conditions were divided into three experimental groups (n = 6/group): control group (frogs not subjected to any surgical manipulation), sham (frogs in which only surgical procedures for isolating the sciatic nerve were performed), and SNT (frogs in which the right sciatic nerve was completely transected). These animals were killed three days after the procedure, and their sciatic nerve DRGs used to demonstrate the effects of nerve transection on the ultrastructure, NADPH-diaphorase reaction, and immunohistochemical serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3 in the DRG. Other 20 animals, divided into the same experimental groups, were used to demonstrate the effects of SNI on the uptake of 14C-2-DG in the presence or absence of lactate, the production rate of 14CO2 from 14C-L-lactate and 14C-glucose in the DRG. These frogs were used to further demonstrate the effects of peripheral denervation on plasma glucose and lactate levels. Our results have demonstrated that sensory neurons of bullfrog, Lithobates catesbianus, DRG showed distribution, diameter and morphology similar to those described for these ganglion cells in mammals. The CGSs showed morphology similar to that described for these cells in the lymph nodes of other vertebrate species. Cells types II and III, observed in rabbit DRG did not occur in the Lithobates catesbianus DRG. The pattern of NADPH-diaphorase activity and distribution of immunoreactivity of serotonin, tyrosine hydroxylase and Glut 1 and 3 were also similar to those described in mammals. For the first time, it has been demonstrated the presence of NADPH-diaphorase reaction on SGCs of DRG in amphibians. The uptake of 14C-2-DG was reduced when lactate was added to the incubation medium. SNT-induced changes were also similar to those ones described in mammals. There was an increase in the number of mitochondria, endoplasmic reticulum, ribosomes and filaments in the SGCs cytoplasm; more neurons and SGCs with positive reaction to NADPH-diaphorase; a greater number of tyrosine hydroxylase immunoreactive extensions around body sensory neurons; and more c-Fos immunoreactivity in neuronal nuclei. No changes occurred in serotonin immunoreactivity and glucose transporters. There was an increase in the uptake of 14C-2-DG, which was reduced when lactate was added to the incubation medium. However, the formation of 14C-2-DG from 14C-L-lactato and glucose did not change under these conditions. Unlike mammals, SNT caused no change in the number of SGCs in DRG, showing a peculiarity in the response of frogs to SNT. Therefore, our study supports the use of frogs as an experimental model to study the effects of SNT, a model of phantom pain on the nerve tissue. However, given the peculiar differences occurred in the DRG of frogs with SNT, it is clearly necessary to carry out further studies to better understand the effects of an experimental situation like this in such animals.
30

Efeito da secção do nervo isquiático sobre parâmetros ultraestrutural, histoquímico, imunoistoquímico e de captação de análogos da glicose em gânglio da raiz dorsal de rãs Lithobates catesbianus

Rigon, Fabiana January 2013 (has links)
As rãs são utilizadas como modelos experimentais em diferentes situações experimentais. Uma delas é o estudo dos efeitos da seção do nervo isquiático (SNI) sobre o tecido nervoso. Essa ampla utilização desses animais como modelos experimentais justifica a realização de estudos que visam o conhecimento morfofuncional de seus tecidos. Inúmeros estudos mostram que, assim como nos mamíferos, o principal substrato energético no tecido nervoso de rãs é a glicose. Porém, é desconhecida a distribuição dos transportadores de glicose no tecido nervoso de rãs, bem como se a SNI altera esse transporte. Outra questão em aberto é se o lactato, cuja concentração está aumentada no plasma de rãs durante períodos de hibernação e após atividades motoras, é usado como substrato energético pelo tecido nervoso, o que está demonstrado em outras espécies de vertebrados. É desconhecida ainda no gânglio da raiz dorsal (GRD) de rãs a distribuição e os efeitos da SNT sobre a reação à nicotinamida adenina dinucleotídeo fosfato diaforase (NADPH-diaforase), enzima considerada equivalente a óxido nítrico sintase, responsável pela síntese de óxido nítrico, e a reação ao ácido periódico-reativo de Schiff (PAS), que indica a presença de mucopolissarídeos, incluindo o glicogênio, uma importante reserva energética no tecido nervoso de rãs. Desconhece-se também a distribuição e os efeitos da SNT sobre a imunorreatividade à serotonina, importante molécula com função neurotransmissora e/ou moduladora no sistema nervoso, tirosina hidroxilase, enzima limitante na síntese de catecolaminas, moléculas com diversos papéis fisiológicos, incluindo ação neurotransmissora e/ou neuromoduladora no tecido nervoso, e c-Fos, proteína considerada marcadora de ativação neural por estimulação nociva. Outras questões ainda em aberto são os efeitos da SNT sobre: a captação do análogo da glicose 1-14C 2-deoxi-D-glicose (14C-2-DG) e concentração plasmática de glicose e lactato; se os tipos II e III de células gliais satélites (CGSs), recentemente descritas no GRD de coelho, estão presentes nesse gânglio de rãs; e os efeitos da SNT sobre a ultraestrutura de CGSs e neurônios do GRD. Assim, o objetivo dessa tese foi determinar: 1) a ultraestrutura de neurônios e CGSs; 2) a distribuição das reações à NADPH-diaforase e PAS, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose tipo 1 e 3; e 3) a captação de 14C-2-DG, na presença e ausência de lactato, em GRD de rãs Lithobates catesbianus com e sem SNI. A escolha pelos transportadores de glicose tipos 1 e 3 foi pelo fato de ocorrerem na membrana de endotélio, células gliais e de neurônios. Para a realização do estudo inicialmente 12 rãs Lithobates catesbianus, adultas, machos, com peso de 100-200g, que não sofreram qualquer manipulação cirúrgica foram mortas por decapitação e os gânglios das raízes dorsais (GRDs) do nervo isquiático retirados e preparados para análises ultraestrutural, histoquímica à NADPH-diaforase e PAS, e imunoistoquímica à serotonina, tirosina hidroxilase e transportadores de glicose dos tipos 1 e 3. Feito isso, 18 outras rãs, nas mesmas condições físicas, foram divididas em três grupos experimentais (n=6/grupo): controle (rãs que não sofreram qualquer manipulação cirúrgica), sham (rãs onde foram efetuados apenas os procedimentos para isolamento do nervo isquiático) e SNI (rãs que tiveram o nervo isquiático direito totalmente seccionado em seu tronco comum). Esses animais foram mortos três dias após a intervenção cirúrgica e seus GRDs do nervo isquiático usados para demonstrar os efeitos da secção nervosa sobre a ultraestrutura, a reação à NADPH-diaforase, e a imunoistoquímica à serotonina, tirosina hidroxilase, c-Fos e transportadores de glicose dos tipos 1 e 3 no GRD. Outros 20 animais, divididos nos mesmos grupos experimentais, foram usados para demonstrar os efeitos da SNI sobre a captação de 14C-2-DG, na presença ou ausência de lactato, e a taxa de produção de 14CO2 a partir de 14C-L-lactato e de 14C-glicose no GRD. Essas rãs foram usadas ainda para demonstrar os efeitos da denervação periférica sobre a concentração plasmática de glicose e lactato. Nossos resultados mostraram que os neurônios sensoriais do GRD de rã Lithobates catesbianus tiveram distribuição, diâmetro e morfologia que foi similar àquela descrita para essas células em gânglio de mamíferos. As CGSs apresentaram morfologia similar àquela descrita para essas células em gânglios de outras espécies de vertebrados. As células dos tipos II e III, observadas no GRD de coelho, não ocorreram no GRD de Lithobates catesbianus. O padrão de atividade à NADPH-diaforase e a distribuição da imunorreatividade à serotonina, tirosina hidroxilase e Glut 1 e 3 foram também similares ao descrito em mamíferos. Pela primeira vez foi demonstrada, em anfíbios, a presença de reação à NADPH-diaforase em CGCs do GRD. A captação de 14C-2-DG foi reduzida quando o lactato foi acrescentado ao meio de incubação. As alterações induzidas pela SNI foram também similares àquelas descritas nos mamíferos. Houve acréscimo no número de mitocôndrias, retículo endoplasmático, ribossomas e filamentos no citoplasma das CGSs, mais neurônios e CGCs com reação positiva à NADPH-diaforase, um maior número de prolongamentos imunorreativos à tirosina hidroxilase em torno de somas de neurônios sensoriais, e mais núcleos neuronais imunorreativos a c-Fos. Nenhuma alteração ocorreu na imunorreatividade a serotonina e transportadores de glicose. Houve aumento na captação de 14C-2-DG, que foi reduzido quando o lactato foi acrescentado ao meio de incubação. Porém, a formação de 14CO2 a partir de 14C-L-lactato e de 14C-glicose não alterou nessas condições. Todavia, diferentemente dos mamíferos, a SNI não provocou mudança no número de CGCs no GRD, mostrando uma peculiaridade na resposta das rãs à SNI. Assim, nosso estudo reforça o uso de rãs como modelo experimental para estudo dos efeitos da SNI, um modelo de dor fantasma, sobre o tecido nervoso. Porém, dada a diferença peculiar ocorrida no GRD de rãs com SNI, é evidente a necessidade de mais conhecimento dos efeitos dessa situação experimental nesses animais. / Frogs have been used as experimental models in different experimental situations. One of these is the study of the effects of the sciatic nerve transection (SNT) on the nerve tissue. The wide use of these animals as experimental models justifies the studies aimed at morphofunctionally understanding of their tissues. Numerous studies have shown that glucose is the main energy substrate in the nerve tissue of frogs as well as in mammals. However, the distribution of glucose transporters in the nerve tissue of frogs is unknown as well as whether SNT alters such transportation. Another unanswered question is whether the lactate, whose concentration is increased in the frog plasma during hibernation periods and after motor activities, is used as an energy substrate by the nerve tissue, which has been demonstrated in other vertebrate species. In the dorsal root ganglion (DRG) cells of frogs are still unknown the distribution and effects of SNT on the reaction of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-diaphorase), an enzyme that is considered equivalent to nitric oxide synthase, responsible for the synthesis of nitric oxide, and on the reaction of periodic acid-Schiff (PAS), which indicates the presence of mucopolysaccharides, including glycogen, an important energy reserve in frog nerve tissue. Moreover, the distribution and effects of SNT on immunoreactivity to serotonin, an important molecule that functions as a neurotransmitter and / or neuromodulator in the nervous system, tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, molecules with various physiological roles, including neurotransmitter and / or neuromodulator action in the nerve tissue, and c-Fos, a protein that is regarded as a marker of neuronal activation by noxious stimulation are also unknown. Other questions regarding is the effect of SNT on the uptake of glucose analogue 2-Deoxy-D-glucose-1-14C (14C-2-DG) and glucose and lactate concentration plasma; whether the types II and III of satellite glial cells (SGCs), recently described in rabbit DRG, are present in this ganglion of frogs; and the effects of SNT on the ultrastructure of SGCs and DRG neurons remain unanswered as well. Thus, this thesis aimed to determine: 1) the ultrastructure of neurons and SGCs; 2) the distribution of NADPH-diaphorase and PAS reaction, and immunohistochemistry for serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3; and 3) the uptake of 2-DG-14C, in the presence and absence of lactate, in DRG of frogs, Lithobates catesbianus, with and without SNT. Glucose transporters types 1 and 3 were chosen because they occur in the membrane of endothelial cells, glial cells and neurons. Initially, 12 adult male frogs, Lithobates catesbianus, weighing 100-200g, not having undergone any previous surgical manipulation, were killed by decapitation. The DRGs of the sciatic nerve were removed and prepared for ultrastructural analysis, histochemistry of NADPH-diaphorase and PAS, and immunohistochemistry for serotonin, tyrosine hydroxylase and glucose transporters types 1 and 3. After that, 18 other frogs in the same physical conditions were divided into three experimental groups (n = 6/group): control group (frogs not subjected to any surgical manipulation), sham (frogs in which only surgical procedures for isolating the sciatic nerve were performed), and SNT (frogs in which the right sciatic nerve was completely transected). These animals were killed three days after the procedure, and their sciatic nerve DRGs used to demonstrate the effects of nerve transection on the ultrastructure, NADPH-diaphorase reaction, and immunohistochemical serotonin, tyrosine hydroxylase, c-Fos and glucose transporters types 1 and 3 in the DRG. Other 20 animals, divided into the same experimental groups, were used to demonstrate the effects of SNI on the uptake of 14C-2-DG in the presence or absence of lactate, the production rate of 14CO2 from 14C-L-lactate and 14C-glucose in the DRG. These frogs were used to further demonstrate the effects of peripheral denervation on plasma glucose and lactate levels. Our results have demonstrated that sensory neurons of bullfrog, Lithobates catesbianus, DRG showed distribution, diameter and morphology similar to those described for these ganglion cells in mammals. The CGSs showed morphology similar to that described for these cells in the lymph nodes of other vertebrate species. Cells types II and III, observed in rabbit DRG did not occur in the Lithobates catesbianus DRG. The pattern of NADPH-diaphorase activity and distribution of immunoreactivity of serotonin, tyrosine hydroxylase and Glut 1 and 3 were also similar to those described in mammals. For the first time, it has been demonstrated the presence of NADPH-diaphorase reaction on SGCs of DRG in amphibians. The uptake of 14C-2-DG was reduced when lactate was added to the incubation medium. SNT-induced changes were also similar to those ones described in mammals. There was an increase in the number of mitochondria, endoplasmic reticulum, ribosomes and filaments in the SGCs cytoplasm; more neurons and SGCs with positive reaction to NADPH-diaphorase; a greater number of tyrosine hydroxylase immunoreactive extensions around body sensory neurons; and more c-Fos immunoreactivity in neuronal nuclei. No changes occurred in serotonin immunoreactivity and glucose transporters. There was an increase in the uptake of 14C-2-DG, which was reduced when lactate was added to the incubation medium. However, the formation of 14C-2-DG from 14C-L-lactato and glucose did not change under these conditions. Unlike mammals, SNT caused no change in the number of SGCs in DRG, showing a peculiarity in the response of frogs to SNT. Therefore, our study supports the use of frogs as an experimental model to study the effects of SNT, a model of phantom pain on the nerve tissue. However, given the peculiar differences occurred in the DRG of frogs with SNT, it is clearly necessary to carry out further studies to better understand the effects of an experimental situation like this in such animals.

Page generated in 0.046 seconds