1 |
Global quantification of cellular protein degradation kineticsMcShane, Erik 31 March 2017 (has links)
Es wird allgemein angenommen, dass Proteine exponentiell degradiert werden. Das bedeutet, dass neu synthetisierte als auch alte Proteine mit gleicher Wahrscheinlichkeit degradiert werden. Es tauchen jedoch immer mehr Hinweise dafür auf, dass das nicht immer der Fall sein muss. Um diese Fragestellung systematisch anzugehen, haben wir eine Methode zur metabolischen Pulsmarkierung mit der nichtkanonischen Aminosäure Azidohomoalanine (AHA) entwickelt. AHA ermöglicht die Anreicherung von neu synthetisierten Proteinen direkt nach einem Puls oder nach einer „chase“ (Nachverfolgung) Periode in AHA freiem Medium. Wir kombinierten diese Methode mit SILAC und Shotgun Proteomik um zu quantifizieren wieviel Protein nach verschiedenen chase-Perioden übrig bleibt. Damit konnten wir Degradationsprofile für tausende von Proteinen erstellen. Unsere Daten zeigen, dass mehr als 10 % der Proteine nicht exponentiell degradiert werden (NED). Diese Proteine werden mit fortschreitendem Alter ausschließlich stabiler. Proteasomale Degradation von überschüssigen Proteinkomplexuntereinheiten scheint einen Großteil der NEDs zu erklären. Beim Vergleich zwischen murinen und humanen Zellen stellte sich heraus, dass NED teilweise konserviert ist. Das liegt scheinbar daran, dass diese Zellen trotz unterschiedlichem Ursprungs einheitlich bestimmte Untereinheiten überproduzieren. Da überschüssige NED Proteine bereits unter Standardbedingungen degradiert werden, nahmen wir an, dass die zusätzliche Überproduktion eines NED Proteins seine Level im stationären Zustand nicht verändern sollte. Um dies zu zeigen, quantifizierten wir Degradationskinetiken von Proteinen einer aneuploidenZelllinie. Wir fanden, dass NED Proteine, die auf trisomischen Chromosomen codiert sind, nicht in gleichem Maße ihr stationäres Level steigerten wie exponentiell degradierte Proteine. In Übereinstimmung mit unserer Hypothese verzeichneten wir stattdessen eine Zunahme der anfänglichen Degradationsraten dieser NED Proteine. / Proteins are thought to be degraded exponentially. That means that newly synthesized proteins have the same probability to be degraded as old proteins. However, evidence has accumulated showing that this is not true in all cases. To analyze this more systematically, we developed a method employing metabolic pulse-labeling by the non-canonical amino acid azidohomoalanine (AHA). AHA enables enrichment of newly synthesized proteins directly after pulse or after chase in AHA-free medium. We used SILAC and shotgun proteomics to quantify how much protein remains after different lengths of chase to create degradation profiles for thousands of proteins. Importantly, these degradation profiles allowed us to detect changes in degradation kinetics as the proteins age. We found that more than 10 % of proteins are non-exponentially degraded (NED). These protein are exclusively stabilized by age. Proteasomal degradation of excess protein complex subunits seems to explain a large fraction of NED. Comparing NED in mouse and human cells, we found that NED is at least partially conserved, seemingly due to cells consistently making too much of certain subunits. These overproduced subunits are on average shorter and more structured than the exponentially degraded proteins within the same complex. Finally, since excess NED proteins are degraded during baseline conditions, we hypothesized that making more of a NED protein would not increase its steady state levels. We employed an aneuploidy cell model and found that indeed NED proteins encoded on trisomic chromosomes did not increase in steady state levels to the same extent as exponentially degraded proteins. Instead, we recorded an increase in initial degradation of these proteins. In summary, we present a method for global pule-chase experiments allowing the detection of age-dependent protein degradation with possible implications for the understanding of aneuploidy and cancer.
|
2 |
Nuclear translationBaboo, Sabyasachi January 2012 (has links)
In bacteria, protein synthesis can occur tightly coupled to transcription. In eukaryotes, it is believed that translation occurs solely in the cytoplasm; I test whether some occurs in nuclei and find: (1) L-azidohomoalanine (Aha) – a methionine analogue (detected by microscopy after attaching a fluorescent tag using ‘click’ chemistry) – is incorporated within 5 s into nuclei in a process sensitive to the translation inhibitor, anisomycin. (2) Puromycin – another inhibitor that end-labels nascent peptides (detected by immuno-fluorescence) – is similarly incorporated in a manner sensitive to a transcriptional inhibitor. (3) CD2 – a non-nuclear protein – is found in nuclei close to the nascent RNA that encodes it (detected by combining indirect immuno-labelling with RNA fluorescence in situ hybridization using intronic probes); faulty (nascent) RNA is destroyed by a quality-control mechanism sensitive to translational inhibitors. I conclude that substantial translation occurs in the nucleus, with some being closely coupled to transcription and the associated proof-reading. Moreover, most peptides made in both the nucleus and cytoplasm are degraded soon after they are made with half-lives of about one minute. I also collaborated on two additional projects: the purification of mega-complexes (transcription ‘factories’) containing RNA polymerases I, II, or III (I used immuno-fluorescence to confirm that each contained the expected constituents), and the demonstration that some ‘factories’ specialize in transcribing genes responding to tumour necrosis factor α – a cytokine that signals through NFκB (I used RNA fluorescence in situ hybridization coupled with immuno-labelling to show active NFκB is found in factories transcribing responsive genes).
|
Page generated in 0.0608 seconds