• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 106
  • 48
  • 17
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Study and characterization of azotobacter vinelandii mutant that overproduces poly-beta-hydroxybutyrate

Pyla, Rajkumar 07 August 2010 (has links)
Azotobacter vinelandii contains an iron-regulatory small RNA ArrF whose expression is dependent upon the levels of iron and ferric uptake regulator. The deletion of ArrF-encoding gene resulted in a 300old increase in the production of polyhydroxybutyrate (PHB), a polymer of industrial importance. This ∆arrF mutant exhibited wild-type growth and growth-associated PHB production. Limited iron and aeration elevated the PHB production in the mutant as well as wild type. SDS-PAGE and MALDI-MS/MS revealed the overexpression of acetyl-CoA reductase, a phbBAC operon enzyme and the proteins that would alleviate the stress due to PHB accumulation in the ∆arrF mutant. Real-time RT-PCR revealed that phbR, phbB, phbA and phbC were upregulated in the mutant. Increased levels of activator PhbR in the mutant elevates the expression of phbB, phbA and phbC, resulting in the PHB overproduction. The proteins differentially expressed in the ∆arrF mutant were determined by gel-based proteomics and confirmed by real time RT-PCR. 6-phosphogluconolactonase that involve in the production of NADPH and acetyl-CoA, was upregulated, while the proteins involved in the TCA cycle that consumes acetyl-CoA were downregulated. Heat-shock proteins such as HSP20 and GroEL were overexpressed in the mutant. In addition, antioxidant proteins such as Fe-containing supeoxide dismutase (FeSOD), a putative oxidoreductase with unknown function, alkyl hydroperoxide reductase, flavorprotein WrbA and cysteine synthase were also upregulated, indicating that the PHB accumulation is highly stressful to the cells. Upregulated in the ∆arrF mutant were acetyl-CoA carboxylase, flagellin, and adenylate kinase. Among the genes upregulated in the ∆arrF mutant, sodB gene coding for Fe-superoxide dismutase and phbF gene encoding PHB synthesis regulator appears to be negatively regulated by small RNA ArrF in an antisense mechanism. However, all the TCA cycle genes were downregulated in the ∆arrF mutant. In addition to the TCA cycles enzyme, glutamate synthetase, elongation factor-Tu, iron ABC transporter, and major outer membrane porin OprF were downregulated in the ∆arrF mutant. Based on the results, it is concluded that several factors are responsible for the overproduction of PHB polymer in the ∆arrF mutant and one of which is the direct effect of small RNA ArrF on the expression of PhbF .
82

The production of indoleacetic acid- and gibberellin-like substances by Azotobacter vinelandii.

Lee, Mee. January 1970 (has links)
No description available.
83

Controlled Expression and Functional Analysis of the Iron-Sulfur Cluster Biosynthetic Machinery in Azotobacter vinelandii

Johnson, Deborah Cumaraswamy 02 August 2006 (has links)
A system was developed for the controlled expression of genes in Azotobacter vinelandii by using genomic fusions to the sucrose catabolic regulon. This system was used for the functional analysis of the A. vinelandii isc genes, whose products are involved in the maturation of [Fe-S] proteins. For this analysis the scrX gene, contained within the sucrose catabolic regulon, was replaced by the A. vinelandii iscS, iscU, iscA, hscB, hscA, fdx, iscX gene cluster, resulting in duplicate genomic copies of these genes, one whose expression is directed by the normal isc regulatory elements (Pisc) and the other whose expression is directed by the scrX promoter (PscrX). Functional analysis of [Fe-S] protein maturation components was achieved by placing a mutation within a particular Pisc-controlled gene with subsequent repression of the corresponding PscrX-controlled component by growth on glucose as the carbon source. This experimental strategy was used to show that IscS, IscU, HscBA and Fdx are essential in A. vinelandii and that their depletion results in a deficiency in the maturation of aconitase, an enzyme that requires a [4Fe-4S] cluster for its catalytic activity. Depletion of IscA results in null growth only when cells are cultured under conditions of elevated oxygen, marking the first null phenotype associated with the loss of a bacterial IscA-type protein. Furthermore, the null growth phenotype of cells depleted for HscBA could be partially reversed by culturing cells under conditions of low oxygen. These results are interpreted to indicate that HscBA and IscA could have functions related to the protection or repair of the primary IscS/IscU machinery when grown under aerobic conditions. Conserved amino acid residues within IscS, IscU, and IscA that are essential for their respective functions and/or display a partial or complete dominant-negative growth phenotype were also identified using this system. Inactivation of the IscR repressor protein resulted in a slow growth phenotype that could be specifically attributed to the elevated expression of an intact [Fe-S] cluster biosynthetic system. This system was also used to investigate the extent to which the two [Fe-S] biosynthetic systems in A. vinelandii, Nif and Isc, can perform overlapping functions. Under normal laboratory growth conditions, no cross-talk between the two systems could be detected. However, elevated expression of Isc components as a consequence of inactivation of the IscR repressor protein results in a modest ability of the Isc [Fe-S] protein maturation components to replace the function of Nif-specific [Fe-S] protein maturation components. Similarly, when expressed at very high levels the Nif-specific [Fe-S] protein maturation components could functionally replace the Isc components. Oxygen levels were also found to affect the ability of the Nif and Isc systems to perform common functions. Nevertheless, the lack of significant reciprocal cross-talk between the Nif and Isc systems when they are produced only at levels necessary to satisfy their respective physiological functions, indicates a high level of target specificity with respect to [Fe-S] protein maturation. / Ph. D.
84

The effect of various organic compounds on the growth of azotobacter

Williams, Bruce January 1914 (has links)
The foregoing paper reports a study on the effect of various organic compounds on the growth of Azotobacter. The study was induced by the theory that the soil contains organic substances which are deleterious to plant growth and which are important factors in influencing soil fertility. It is, therefore, interesting to determine if this toxicity extends to the lower plants. The Azotobacter was chosen as a representative of the soil flora since it is of recognized importance in the maintenance of the soil fertility and its growth may be accurately measured by analytical means. The compounds used were those likely to be constituents of the soil. The results of the study indicate that fixation of nitrogen by Azotobacter is only slightly influenced by most of the compounds investigated. A depression is noted in many cases but it is usually the result of a relatively high concentration of the compound used. Hydroquinone and Salicylic Aldehyde revealed the most toxic properties of any compounds studied. Esculin, Quinic Acid, and Borneal afforded marked stimulation to the growth of the organism. The effects of the compounds on Azotobacter are not, as a rule, in accord with what has been reported of their action on the higher plants. In concentrations which are fatal to certain higher plants, many of the compounds only slightly depressed fixation. A number of nitrogenous bodies were investigated. Such compounds as Nicotine, Picoline, and Skatol exhibited toxic properties commensurate to those usually ascribed to these substances. Caffeine appeared to stimulate the growth of the organism. Many of the nitrogenous compounds used which have been reported as beneficial to higher plants exercised a marked depression on fixation. It appears that the simpler compounds were more pronounced in this respect than were the more complex ones. It is suggested that this condition is not one of toxicity but that the nitrogen of the compounds was utilized by the Azotobacter in preference to that of the atmosphere. Urea, Glycocoll, Formamide, and Allantoin were especially active in depressing fixation. / Master of Science
85

Roles of MoFe protein α-274-histidine, α-276-tyrosine and α-277-arginine residues in Azotobacter vinelandii nitrogenase catalysis

Shen, Joan 06 June 2008 (has links)
Previous studies revealed that α-275-Cys provides an essential ligand to one of the Fe atoms on the FeMo-cofactor, and its substitutions resulted in inactive nitrogenase. In order to study the structural-functional relationship of the protein environment in this region with respect to the FeMo-cofactor, subtle changes were introduced through substitutions using a site-directed mutagenesis and gene-replacement method at α-274-His, α-276-Tyr and α-277-Arg in Azotobacter vinelandii nitrogenase. Characterization of mutants strains resulting from amino acid substitutions at residues, α-274-His, α-276-Tyr or α-277-Arg, using activity assays, resulted in mixed Nif phenotypes. Therefore, none of these residues is absolutely required for nitrogenase activity. However, the changed EPR spectra of the altered MoFe proteins from some strains with substitutions at either α-276-Tyr or α-277-Arg indicated that the FeMo-cofactor environment had been perturbed by these substitutions. Together with its changed EPR spectrum, substituting α-277-Arg with His showed some extraordinary catalytic features, such as its inability to reduce N₂ while retaining respectable C₂H₂- and H⁺-reduction activities. It was also found that this altered protein used a higher percentage of total electron flux for H₂ evolution under an C₂H₂/Ar atmosphere than did wild type. Further characterization of the purified α-277<sup>his</sup> MoFe protein in parallel with its wild type counterpart revealed that the alteration in the α-277<sup>his</sup> MoFe protein caused a lower affinity for C₂H₂ binding, whereas it did not affect the CO binding. Interestingly, CO-induced cooperativity during C₂H₂ reduction was observed in this altered MoFe protein clearly indicating two sites for C₂H₄ evolution, one of which might be in the vicinity of this residue. Furthermore, the α-277<sup>his</sup> MoFe protein does not bind or reduce N₂ leading to the proposal of a nonexistent E₄ redox state in the MoFe protein catalytic cycle which was supported by stopped-flow spectrophotometric evidence. This altered α-277<sup>his</sup> MoFe protein showed comparable physical stabilities to that of the wild-type protein, and its ATP hydrolysis rates remained constant under a number of substrates assayed. Therefore, the substitution has not affected the overall protein structure, rather, it has changed the local FeMo-cofactor environment. When we studied the purified α-276<sup>his</sup> and α-274<sup>gin</sup>/α-276<sup>his</sup> MoFe proteins and compared the results with the data from the α-277<sup>his</sup> and wild-type MoFe protein, we found that there is no direct correlation between the additional set of EPR signals observed in these altered MoFe proteins and their catalytic activities. The current understanding concerning the functionality of these residues is that they are involved in maintaining a proper environment for FeMoco to bind and in stabilizing the different redox states of the enzyme during catalysis. / Ph. D.
86

Análise transcricional dos genes do sistema ISC em EUCALYPTUS GRANDIS e AZOBACTER VINELAND

Oliveira, Luisa Abruzzi de January 2012 (has links)
Os cofatores de ferro-enxofre [Fe-S] estão entre os mais versáteis e antigos cofatores enzimáticos encontrados na natureza. As células têm explorado as propriedades eletrônicas e estruturais destes cofatores inorgânicos para uma ampla variedade de atividades incluindo a transferência de elétrons, a catálise e a ativação de substratos. Um grande número de proteínas está envolvido na biogênese dos cofatores [Fe-S], e este processo pode ser dividido em três etapas principais: (i) formação do enxofre elementar, (ii) montagem do cofator [Fe-S], e (iii) inserção do cofator em apoproteínas. As plantas realizam fotossíntese e respiração, dois processos que requerem proteínas Fe-S, sendo os únicos organismos em que a biossíntese destas proteínas é compartimentalizada. Diversos fatores afetam o desenvolvimento das plantas, entre eles, a temperatura baixa, fator limitante à produtividade e à distribuição geográfica das plantas, incluindo Eucalyptus grandis, uma espécie com grande importância econômica. Devido a esse fato, foi realizada uma análise transcricional dos genes codificados pelo sistema ISC de biossíntese de cofatores [Fe-S] NFS1, ISA1 e ISU1 de E. grandis por meio de PCR quantitativa (RT-qPCR), após plântulas desta espécie serem submetidas ao tratamento de frio. O gene NFS1 teve sua expressão reprimida nas primeiras 48 horas de tratamento, porém, após esse período observa-se um aumento da expressão gênica em relação à condição controle. O genes ISU1 e ISA1 apresentaram maior expressão gênica nas primeiras duas horas de tratamento, diminuindo drasticamente logo após este período. Foi verificado um aumento na quantidade relativa de Fe e S nos nas plântulas submetidas ao tratamento de frio, indicando um possível aumento na quantidade de cofatores [Fe-S] requeridos para o reestabelecimento da homeostase celular. As bactérias, por sua vez, desenvolveram pelo menos três sistemas de biossíntese, altamente conservados, que estão envolvidos na formação dos cofatores [Fe-S], sendo estes NIF, ISC e SUF. Em muitas proteobactérias, a regulação da produção de cofatores [Fe-S] pelos sistemas ISC e SUF é controlada por uma única proteína, IscR, pertencente à família de reguladores Rrf2. A proteína IscR possui um domínio de ligação ao DNA na região N-terminal e um segundo domínio de ligação de cofatores com três resíduos de cisteínas (Cys) altamente conservados. A ligação de um cofator do tipo [2Fe-2S] reprime a transcrição do seu próprio promotor in vitro. O genoma de Azotobacter vinelandii não inclui um sistema SUF completo e, portanto, permite o estudo dos efeitos da regulação de IscR não relacionada a SUF. No presente trabalho, objetivamos analisar a expressão do operon isc em linhagens selvagens e mutantes para IscR de A. vinelandii por meio das técnicas de sequenciamento do transcritoma e RT-qPCR. As substituições das Cys92, Cys104, His107 e a deleção de 120 pb da região codificadora do segundo domínio de IscR levaram à indução de um aumento da expressão de todo o operon isc. Notou-se também uma diferença fenotípica clara no tamanho das colônias portadoras das substituições de Cys e His, sendo estas menores em relação à linhagem selvagem. As substituições das Cys98 e Cys111, ou ainda a dupla substituição Cys98/111 não levaram a alteração da expressão do operon. A ligação ou não do cofator [Fe-S] é, portanto, responsável pela regulação do operon isc em A. vinelandii, bem como, de outros operons codificadores de proteínas envolvidas em cadeias tranportadoras de elétrons. / The iron-sulfur clusters [Fe-S] are among the oldest and most versatile enzyme cofactors found in nature. The cells have explored the structural and electronic properties of these inorganic clusters for a wide variety of activities including electron transfer, catalysis and activation of substrates. A large number of proteins is involved in the biogenesis of the [Fe-S] clusters, and this process can be divided into three main steps: (i) formation of elemental sulfur, (ii) assembly of the [Fe-S] cluster and (iii) insertion into apoproteins. Plants perform photosynthesis and respiration, two processes that require Fe-S protein, and in these organisms the synthesis of these proteins is compartmentalized. Several factors affect the development of plants, among them, the low temperature is a limiting factor to productivity and geographical distribution of plants, including Eucalyptus grandis, a specie with great economic importance. Due to this fact, we performed a transcriptional analysis by quantitative PCR (RT-qPCR) of the genes encoded by the E. grandis [Fe-S] cluster ISC system NFS1, ISA1 and ISU1 after seedlings were submitted to the chilling treatment. The NFS1 gene expression is repressed in the first 48 hours of treatment, but after this period there was an increase in gene expression relating to the control condition. The genes ISU1 and ISA1 showed higher gene expression in the first two hours of treatment, followed by a sharp decrease. There was an increase in the relative amount of Fe and S in the seedlings subjected to cold treatment, indicating a possible increase in the amount of [Fe-S] clusters, required for the reestablishment of cellular homeostasis. Bacteria have developed at least three synthesis systems, highly conserved, which are involved in the formation of Fe-S proteins, NIF, ISC and SUF. In many proteobacteria, the regulation of clusters production by ISC and SUF is controlled by a single protein, IscR, belonging to the Rrf2 regulators family. The protein IscR has a DNA binding site at the N-terminal domain and second cofactors binding domain with three cysteine residues (Cys) highly conserved. The binding of a [2Fe-2S] cluster represses the transcription of its own promoter in vitro. The genome of Azotobacter vinelandii does not include a full SUF system and thus permits the study of the effects of IscR regulation unrelated to SUF. In this study, the aim was to analyze the expression of isc operon in wild type and mutant strains of A. vinelandii IscR by the techniques of the transcriptome sequencing and qRT-PCR. The replacement of Cys92, Cys104, His107 and a deletion of 120 bp region encoding the second IscR domain led to an increased expression of the whole isc operon. It also showed a clear phenotypic difference in colonies size in the strains carrying the substitutions of His and Cys, it was smaller compared to the wild type strain. The replacement of Cys98 and Cys111, or the double substitution Cys98/111 not led to an altered operon expression. The [Fe-S] cluster binding or not, is therefore responsible for the regulation of the isc operon in A. vinelandii as well as of other operons encoding proteins involved in electron tranport chains.
87

Análise transcricional dos genes do sistema ISC em EUCALYPTUS GRANDIS e AZOBACTER VINELAND

Oliveira, Luisa Abruzzi de January 2012 (has links)
Os cofatores de ferro-enxofre [Fe-S] estão entre os mais versáteis e antigos cofatores enzimáticos encontrados na natureza. As células têm explorado as propriedades eletrônicas e estruturais destes cofatores inorgânicos para uma ampla variedade de atividades incluindo a transferência de elétrons, a catálise e a ativação de substratos. Um grande número de proteínas está envolvido na biogênese dos cofatores [Fe-S], e este processo pode ser dividido em três etapas principais: (i) formação do enxofre elementar, (ii) montagem do cofator [Fe-S], e (iii) inserção do cofator em apoproteínas. As plantas realizam fotossíntese e respiração, dois processos que requerem proteínas Fe-S, sendo os únicos organismos em que a biossíntese destas proteínas é compartimentalizada. Diversos fatores afetam o desenvolvimento das plantas, entre eles, a temperatura baixa, fator limitante à produtividade e à distribuição geográfica das plantas, incluindo Eucalyptus grandis, uma espécie com grande importância econômica. Devido a esse fato, foi realizada uma análise transcricional dos genes codificados pelo sistema ISC de biossíntese de cofatores [Fe-S] NFS1, ISA1 e ISU1 de E. grandis por meio de PCR quantitativa (RT-qPCR), após plântulas desta espécie serem submetidas ao tratamento de frio. O gene NFS1 teve sua expressão reprimida nas primeiras 48 horas de tratamento, porém, após esse período observa-se um aumento da expressão gênica em relação à condição controle. O genes ISU1 e ISA1 apresentaram maior expressão gênica nas primeiras duas horas de tratamento, diminuindo drasticamente logo após este período. Foi verificado um aumento na quantidade relativa de Fe e S nos nas plântulas submetidas ao tratamento de frio, indicando um possível aumento na quantidade de cofatores [Fe-S] requeridos para o reestabelecimento da homeostase celular. As bactérias, por sua vez, desenvolveram pelo menos três sistemas de biossíntese, altamente conservados, que estão envolvidos na formação dos cofatores [Fe-S], sendo estes NIF, ISC e SUF. Em muitas proteobactérias, a regulação da produção de cofatores [Fe-S] pelos sistemas ISC e SUF é controlada por uma única proteína, IscR, pertencente à família de reguladores Rrf2. A proteína IscR possui um domínio de ligação ao DNA na região N-terminal e um segundo domínio de ligação de cofatores com três resíduos de cisteínas (Cys) altamente conservados. A ligação de um cofator do tipo [2Fe-2S] reprime a transcrição do seu próprio promotor in vitro. O genoma de Azotobacter vinelandii não inclui um sistema SUF completo e, portanto, permite o estudo dos efeitos da regulação de IscR não relacionada a SUF. No presente trabalho, objetivamos analisar a expressão do operon isc em linhagens selvagens e mutantes para IscR de A. vinelandii por meio das técnicas de sequenciamento do transcritoma e RT-qPCR. As substituições das Cys92, Cys104, His107 e a deleção de 120 pb da região codificadora do segundo domínio de IscR levaram à indução de um aumento da expressão de todo o operon isc. Notou-se também uma diferença fenotípica clara no tamanho das colônias portadoras das substituições de Cys e His, sendo estas menores em relação à linhagem selvagem. As substituições das Cys98 e Cys111, ou ainda a dupla substituição Cys98/111 não levaram a alteração da expressão do operon. A ligação ou não do cofator [Fe-S] é, portanto, responsável pela regulação do operon isc em A. vinelandii, bem como, de outros operons codificadores de proteínas envolvidas em cadeias tranportadoras de elétrons. / The iron-sulfur clusters [Fe-S] are among the oldest and most versatile enzyme cofactors found in nature. The cells have explored the structural and electronic properties of these inorganic clusters for a wide variety of activities including electron transfer, catalysis and activation of substrates. A large number of proteins is involved in the biogenesis of the [Fe-S] clusters, and this process can be divided into three main steps: (i) formation of elemental sulfur, (ii) assembly of the [Fe-S] cluster and (iii) insertion into apoproteins. Plants perform photosynthesis and respiration, two processes that require Fe-S protein, and in these organisms the synthesis of these proteins is compartmentalized. Several factors affect the development of plants, among them, the low temperature is a limiting factor to productivity and geographical distribution of plants, including Eucalyptus grandis, a specie with great economic importance. Due to this fact, we performed a transcriptional analysis by quantitative PCR (RT-qPCR) of the genes encoded by the E. grandis [Fe-S] cluster ISC system NFS1, ISA1 and ISU1 after seedlings were submitted to the chilling treatment. The NFS1 gene expression is repressed in the first 48 hours of treatment, but after this period there was an increase in gene expression relating to the control condition. The genes ISU1 and ISA1 showed higher gene expression in the first two hours of treatment, followed by a sharp decrease. There was an increase in the relative amount of Fe and S in the seedlings subjected to cold treatment, indicating a possible increase in the amount of [Fe-S] clusters, required for the reestablishment of cellular homeostasis. Bacteria have developed at least three synthesis systems, highly conserved, which are involved in the formation of Fe-S proteins, NIF, ISC and SUF. In many proteobacteria, the regulation of clusters production by ISC and SUF is controlled by a single protein, IscR, belonging to the Rrf2 regulators family. The protein IscR has a DNA binding site at the N-terminal domain and second cofactors binding domain with three cysteine residues (Cys) highly conserved. The binding of a [2Fe-2S] cluster represses the transcription of its own promoter in vitro. The genome of Azotobacter vinelandii does not include a full SUF system and thus permits the study of the effects of IscR regulation unrelated to SUF. In this study, the aim was to analyze the expression of isc operon in wild type and mutant strains of A. vinelandii IscR by the techniques of the transcriptome sequencing and qRT-PCR. The replacement of Cys92, Cys104, His107 and a deletion of 120 bp region encoding the second IscR domain led to an increased expression of the whole isc operon. It also showed a clear phenotypic difference in colonies size in the strains carrying the substitutions of His and Cys, it was smaller compared to the wild type strain. The replacement of Cys98 and Cys111, or the double substitution Cys98/111 not led to an altered operon expression. The [Fe-S] cluster binding or not, is therefore responsible for the regulation of the isc operon in A. vinelandii as well as of other operons encoding proteins involved in electron tranport chains.
88

Análise transcricional dos genes do sistema ISC em EUCALYPTUS GRANDIS e AZOBACTER VINELAND

Oliveira, Luisa Abruzzi de January 2012 (has links)
Os cofatores de ferro-enxofre [Fe-S] estão entre os mais versáteis e antigos cofatores enzimáticos encontrados na natureza. As células têm explorado as propriedades eletrônicas e estruturais destes cofatores inorgânicos para uma ampla variedade de atividades incluindo a transferência de elétrons, a catálise e a ativação de substratos. Um grande número de proteínas está envolvido na biogênese dos cofatores [Fe-S], e este processo pode ser dividido em três etapas principais: (i) formação do enxofre elementar, (ii) montagem do cofator [Fe-S], e (iii) inserção do cofator em apoproteínas. As plantas realizam fotossíntese e respiração, dois processos que requerem proteínas Fe-S, sendo os únicos organismos em que a biossíntese destas proteínas é compartimentalizada. Diversos fatores afetam o desenvolvimento das plantas, entre eles, a temperatura baixa, fator limitante à produtividade e à distribuição geográfica das plantas, incluindo Eucalyptus grandis, uma espécie com grande importância econômica. Devido a esse fato, foi realizada uma análise transcricional dos genes codificados pelo sistema ISC de biossíntese de cofatores [Fe-S] NFS1, ISA1 e ISU1 de E. grandis por meio de PCR quantitativa (RT-qPCR), após plântulas desta espécie serem submetidas ao tratamento de frio. O gene NFS1 teve sua expressão reprimida nas primeiras 48 horas de tratamento, porém, após esse período observa-se um aumento da expressão gênica em relação à condição controle. O genes ISU1 e ISA1 apresentaram maior expressão gênica nas primeiras duas horas de tratamento, diminuindo drasticamente logo após este período. Foi verificado um aumento na quantidade relativa de Fe e S nos nas plântulas submetidas ao tratamento de frio, indicando um possível aumento na quantidade de cofatores [Fe-S] requeridos para o reestabelecimento da homeostase celular. As bactérias, por sua vez, desenvolveram pelo menos três sistemas de biossíntese, altamente conservados, que estão envolvidos na formação dos cofatores [Fe-S], sendo estes NIF, ISC e SUF. Em muitas proteobactérias, a regulação da produção de cofatores [Fe-S] pelos sistemas ISC e SUF é controlada por uma única proteína, IscR, pertencente à família de reguladores Rrf2. A proteína IscR possui um domínio de ligação ao DNA na região N-terminal e um segundo domínio de ligação de cofatores com três resíduos de cisteínas (Cys) altamente conservados. A ligação de um cofator do tipo [2Fe-2S] reprime a transcrição do seu próprio promotor in vitro. O genoma de Azotobacter vinelandii não inclui um sistema SUF completo e, portanto, permite o estudo dos efeitos da regulação de IscR não relacionada a SUF. No presente trabalho, objetivamos analisar a expressão do operon isc em linhagens selvagens e mutantes para IscR de A. vinelandii por meio das técnicas de sequenciamento do transcritoma e RT-qPCR. As substituições das Cys92, Cys104, His107 e a deleção de 120 pb da região codificadora do segundo domínio de IscR levaram à indução de um aumento da expressão de todo o operon isc. Notou-se também uma diferença fenotípica clara no tamanho das colônias portadoras das substituições de Cys e His, sendo estas menores em relação à linhagem selvagem. As substituições das Cys98 e Cys111, ou ainda a dupla substituição Cys98/111 não levaram a alteração da expressão do operon. A ligação ou não do cofator [Fe-S] é, portanto, responsável pela regulação do operon isc em A. vinelandii, bem como, de outros operons codificadores de proteínas envolvidas em cadeias tranportadoras de elétrons. / The iron-sulfur clusters [Fe-S] are among the oldest and most versatile enzyme cofactors found in nature. The cells have explored the structural and electronic properties of these inorganic clusters for a wide variety of activities including electron transfer, catalysis and activation of substrates. A large number of proteins is involved in the biogenesis of the [Fe-S] clusters, and this process can be divided into three main steps: (i) formation of elemental sulfur, (ii) assembly of the [Fe-S] cluster and (iii) insertion into apoproteins. Plants perform photosynthesis and respiration, two processes that require Fe-S protein, and in these organisms the synthesis of these proteins is compartmentalized. Several factors affect the development of plants, among them, the low temperature is a limiting factor to productivity and geographical distribution of plants, including Eucalyptus grandis, a specie with great economic importance. Due to this fact, we performed a transcriptional analysis by quantitative PCR (RT-qPCR) of the genes encoded by the E. grandis [Fe-S] cluster ISC system NFS1, ISA1 and ISU1 after seedlings were submitted to the chilling treatment. The NFS1 gene expression is repressed in the first 48 hours of treatment, but after this period there was an increase in gene expression relating to the control condition. The genes ISU1 and ISA1 showed higher gene expression in the first two hours of treatment, followed by a sharp decrease. There was an increase in the relative amount of Fe and S in the seedlings subjected to cold treatment, indicating a possible increase in the amount of [Fe-S] clusters, required for the reestablishment of cellular homeostasis. Bacteria have developed at least three synthesis systems, highly conserved, which are involved in the formation of Fe-S proteins, NIF, ISC and SUF. In many proteobacteria, the regulation of clusters production by ISC and SUF is controlled by a single protein, IscR, belonging to the Rrf2 regulators family. The protein IscR has a DNA binding site at the N-terminal domain and second cofactors binding domain with three cysteine residues (Cys) highly conserved. The binding of a [2Fe-2S] cluster represses the transcription of its own promoter in vitro. The genome of Azotobacter vinelandii does not include a full SUF system and thus permits the study of the effects of IscR regulation unrelated to SUF. In this study, the aim was to analyze the expression of isc operon in wild type and mutant strains of A. vinelandii IscR by the techniques of the transcriptome sequencing and qRT-PCR. The replacement of Cys92, Cys104, His107 and a deletion of 120 bp region encoding the second IscR domain led to an increased expression of the whole isc operon. It also showed a clear phenotypic difference in colonies size in the strains carrying the substitutions of His and Cys, it was smaller compared to the wild type strain. The replacement of Cys98 and Cys111, or the double substitution Cys98/111 not led to an altered operon expression. The [Fe-S] cluster binding or not, is therefore responsible for the regulation of the isc operon in A. vinelandii as well as of other operons encoding proteins involved in electron tranport chains.
89

Homéostasie des cofacteurs métalliques de la nitrogénase (molybdène et vanadium) chez Azotobacter vinelandii en présence de matières organique et minérale

Jouogo Noumsi, Christelle January 2016 (has links)
La fixation biologique d’azote (réduction du N2 atmosphérique, non biodisponible, en ammonium (NH3) bioassimilable) est catalysée par la métalloenzyme nitrogénase. Cette enzyme existe sous trois isoformes chez la bactérie du sol Azotobacter vinelandii: les nitrogénases au molybdène (Mo), au vanadium (V) et au fer (Fe). L’acquisition des métaux cofacteurs constitue un paramètre d’intérêt majeur car Mo et V sont fortement complexés à la matrice (matière organique et oxydes) ce qui peut limiter leur disponibilité. Ces travaux ont montré que la présence d’acide tannique et d’oxydes de fer entraîne des changements majeurs dans la gestion des métaux cofacteurs (Mo et V) chez A. vinelandii. Les stratégies d’acquisition des métaux cofacteurs sont fortement modifiées en présence de ces complexants avec (i) un changement important de la quantité des metallophores produits ainsi que (ii) une acquisition simultanée de Mo et V dans des conditions traditionnellement considérées comme non limitantes en Mo. Ceci se traduit par un changement important dans l’utilisation des nitrogénases; les niveaux de transcrits élevés des gènes nifD et vnfD, spécifiques des nitrogénases au Mo et au V respectivement, suggèrent une utilisation simultanée de ces isoenzymes pour assurer la fixation d’azote. Ce projet a permis de mettre en évidence que face à un stress métallique, l’utilisation des isoformes de la nitrogénase par A. vinelandii est un processus plus versatile que précédemment décrit et que le coût d’acquisition des métaux dans ces conditions constitue un facteur important de la régulation de l’activité des nitrogénases. Ceci suggère que les nitrogénases alternatives pourraient contribuer à la fixation d’azote de manière plus importante que présentement admis.
90

Influencia de la biofertilización con Azotobacter chroococcum en la producción y calidad de cebolla rosada (Allium cepa L.) en el valle de Locumba

Aycaya Quenaya, Gladys 18 January 2013 (has links)
Utilizar bacterias fijadoras del nitrógeno como Azotobacter representa una alternativa al empleo de fertilizantes convencionales ya que su uso constituye un ahorro económico para el agricultor y contribuye a la preservación del medio ambiente, ya que no es un fertilizante químico. El presente trabajo tuvo el objetivo de determinar la influencia de diferentes concentraciones de Azotobacter chroococcum, en la producción y calidad de la cebolla rosada (Allium cepa L.) en el valle de Locumba. Se utilizó el diseño experimental de bloques completos al azar con 05 tratamientos experimentales formado por concentraciones de A. chroococcum: 104; 105; 106; 107; y 108 UFC/ml; y 01 tratamiento control formado por la concentración 00 UFC/ml de A. chroococcum. Cada tratamiento con 04 bloques y cada bloque con 24 unidades experimentales. Cada planta de cebolla fue inoculado en 1 L de una suspensión de Azotobacter chroococcum, con una concentración de acuerdo al diseño experimental establecido. Se evaluó el rendimiento y calidad de la cebolla; la calidad en función de la altura de la planta, número de hojas, peso del bulbo y diámetro ecuatorial y polar del bulbo. Se determinó que las concentraciones de A. chroococcum de 105; 106; 107; y 108 UFC/ml, permitieron obtener un mayor incremento en la producción de la cebolla rosada y las concentraciones A. chroococcum que permitieron obtener mayor calidad con respecto a la altura y diámetro ecuatorial fue de 107y 108 UFC/ml, con respecto al bulbo y diámetro polar fueron 106, 107 y 108UFC/ml y al número de hojas con 105, 106, 107, 108UFC/ml respectivamente.

Page generated in 0.1375 seconds