Spelling suggestions: "subject:"bacteriophage""
221 |
Étude épidémiologique de souches de Pseudomonas aeruginosa responsables d’infections et de leurs bactériophages pour une approche thérapeutique / Epidemiological study of infections causing Pseudomonas aeruginosa strains and their bacteriophages for therapeutic approach.Essoh, Christiane you 30 May 2013 (has links)
L'utilisation de virus de bactéries ou bactériophages pourrait être un complément efficace à l’antibiothérapie. Mon travail a porté sur la caractérisation de bactériophages dirigés contre l’espèce Pseudomonas aeruginosa, pathogène opportuniste responsable d'infections des voies respiratoires des patients atteints de mucoviscidose.J'ai tout d'abord déterminé la sensibilité des souches mucoviscidosiques au Pyophage (un cocktail de phages thérapeutiques Géorgien) et identifié six phages lytiques de quatre genres différents. Environ 15% des souches sont résistantes au Pyophage. Ensuite, en utilisant les souches cliniques multi-résistantes aux phages comme bactérie d’enrichissement, 32 phages ont été obtenus à partir des eaux usées de France et Côte d’Ivoire. Tous les phages analysés sont caudés et distribués au sein de dix genres parmi lesquels six exclusivement lytiques. J'ai identifié des souches bactériennes qui demeurent insensibles à tous les phages. J'ai montré que le système CRISPRs-Cas n'est pas associé à la résistance des souches aux phages lytiques. / The use of viruses of bacteria commonly called bacteriophages could constitute an efficient complement to antibiotics. During my PhD, I have characterized phages infecting the opportunistic pathogen Pseudomonas. aeruginosa, responsible for lung infections in cystic fribrosis patients. Firstly, I investigated the efficiency of Pyophage (a cocktail of phages therapeutic Georgian) on clinical P. aeruginosa strains and recovered six lytic phages from four different genus. The Pyophage appears to be unactive on approximately 15% of clinical strains. Secondly, and using multi-phages resistant strains as enrichment bacteria, 32 phages were isolated from waste water of France and Côte d’Ivoire. All phages are tailed and distributed within ten different genus including six exclusively lytic. I identified bacterial strains which remain insensitive to all phages. I also demonstrated that the CRISPRs-cas system plays no role in the resistance of strains to lytic phages.
|
222 |
Engineering antibodies against complex platelet antigens using phage display technologyDe Leon, Ellen Jane, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
Platelets are small anucleate cell fragments found in blood whose physiological role is important in maintaining haemostasis. In vivo, platelet surface glycoproteins mediate the mechanistic roles of platelets, and polymorphic changes to these glycoproteins have been observed to have significant effects on the platelet cellular function and such changes may include over-expression, under-expression and antigenicity of the protein. Human platelet antigens (HPA) are a result of polymorphic differences in platelet surface glycoproteins which have been found to be variably expressed in the population. Foetal maternal alloimmune thrombocytopaenia (FMAIT) is a condition that is observed in the unborn foetus and neonates due to HPA incompatibility between the mother and the foetus. HPA incompatibility accounts for a majority of severe thrombocytopaenic cases in neonates, and delayed diagnosis and treatment of such a condition often lead to intracranial haemorrhage. The risk in neonates diagnosed with FMAIT becomes increasingly significant in cases where intra-uterine (during pregnancy) platelet transfusion is the only effective therapeutic option. There are currently no antenatal screening programs for this condition, and laboratory diagnosis of FMAIT relies on the detection of maternal alloantibodies and parental HPA typing. For these reasons a significant amount of research is currently being invested into the isolation of recombinant antibodies with specific reactivity against FMAIT-related platelet antigens. Stable and specific recombinant platelet antibodies have great potential as a diagnostic agent in antenatal screening and broad-scale HPA typing of blood donors for platelet transfusion. Further characterisation of the isolated antibody may lead to a possible therapeutic agent. Studies by previous researchers have shown that the traditional methods (ie. Mouse monoclonal and EBV transformation) of obtaining monoclonal antibodies against FMAIT-related antigens have proven unsuccessful. The continuing progress in the discipline of phage display has produced several novel antibodies against self and non-self antigens. A further advantage in the application of phage display technology for the isolation of novel antibodies is the easy transition from bacterial to mammalian expression for the characterisation of glycosylated antibodies. The main focus of this project was to create and isolate a recombinant human anti-HPA-3a antibody using phage display for its possible application as a therapeutic or diagnostic agent.
|
223 |
Site Directed Mutagensis of Bacteriophage HK639 and Identification of Its Integration SiteJonnalagadda, Madhuri 01 December 2008 (has links)
Bacteriophages affect bacterial evolution, pathogenesis and global nutrient cycling. They are also the most numerous and diverse group of biological entities on the planet [1, 2, 3, 4, 5, 6]. Members of the Lambda phage family share a similar genetic organization and control early gene expression by suppressing transcription, a process known as antitermination. Transcription antitermination in Lambda is mediated by a phage-encoded protein whereas in lambdoid phage HK022, antitermination is mediated by a phage-encoded RNA molecules. Recent results suggest that another bacteriophage called HK639 also appears to use RNA-mediated antitermination. To characterize this newly identified phage we generated site directed mutations and identified where the phage integrates into the chromosome of its bacterial host.
|
224 |
Binding properties of Hfq to RNA and genomic DNA and the functional implicationsUpdegrove, Taylor Blanton 10 May 2011 (has links)
The bacterial RNA binding protein Hfq is a key component for bacterial sRNA mediated riboregulation of mRNA expression. A kinetic and thermodynamic analysis of Hfq binding to its sRNA targets DsrA, RprA, and OxyS, and to its mRNA target rpoS was carried out. The ability of Hfq to significantly enhance the stability of the DsrA-rpoS and RprA-rpoS complex was demonstrated, and the entire untranslated leader region of rpoS was shown to be important for Hfq binding and in Hfq facilitated sRNA-mRNA duplex formation. Hfq was not shown to enhance OxyS binding to rpoS. DsrA and OxyS were shown to bind mostly to the proximal surface region of Hfq, while RprA bound to both proximal and distal surface regions. The rpoS leader region was shown to possess at least two distinct Hfq binding sites, with one site binding the proximal region and the other to the distal region of Hfq. These sites were shown to be important for Hfq to stimulate DsrA-rpoS binding. The outer-circumference region and the C-terminal tail of Hfq does not play a major role in binding DsrA, RprA, OxyS and rpoS, and in stimulating DsrA-rpoS binding. Evidence was obtained implicating Hfq to bind DsrA, RprA, OxyS, and oligo rA18 in a 1:1 protein to RNA stoichiometry. Binding properties of Hfq to E. coli genomic DNA were examined. Double stranded DNA was shown to bind mostly on the distal surface region and the C-terminal tail of Hfq with an affinity 10 fold less than Hfq targeted RNA. Single stranded DNA binds Hfq more tightly than double stranded DNA and binding seems to be sequence specific. Evidence indicates Hfq binds certain sequences of the E. coli genome.
|
225 |
High throughput mass spectrometry for microbial identificationPierce, Carrie 04 April 2011 (has links)
Bacteria cause significant morbidity and mortality throughout the world, including deadly diseases such as tuberculosis, meningitis, cholera, and pneumonia. Timely and accurate bacterial identification is critical in areas such as clinical diagnostics, environmental monitoring, food safety, water and air quality assessment, and identification of biological threat agents. At present, there is an established need for high throughput, sensitive, selective, and rapid methods for the detection of pathogenic bacteria, as existing methods, while nominally effective, have failed to sufficiently reduce the massive impact of bacterial contamination and infection. The work presented in this thesis focuses on addressing this need and augmenting conventional microorganism research through development of mass spectrometry (MS)-based proteomic applications. MS, a well established tool for addressing biological problems, offers a broad range of laboratory procedures that can be used for taxonomic classification and identification of microorganisms. These methods provide a powerful complement to many of the widely used molecular biology approaches and play critical functions in various fields of science. While implementation of modern biomolecule-identifying instrumentation, such as MS, has long been postulated to have a role in the microbiology laboratory, it has yet to be accepted on a large scale. Described in this document are MS methods that erect strong foundations on which new bacterial diagnostics may be based. A general introduction on key aspects of this work is presented in Chapter 1, where different approaches for detection of pathogenic bacteria are reviewed, and an overview regarding MS and microbial identification is provided. Chapter 2 presents the first implementation of microbial identification via rapid, open air Direct Analysis in Real Time MS (DART MS) to generate ions directly from microbial samples, including the disease-causing bacteria, Coxiella burnetii, Streptococcus pyogenes, and Escherichia coli. Chapter 3 expands on whole cell C. burnetii MS analysis and presents a rapid differentiation method to the strain-level for C. burnetii using mass profiling/fingerprinting matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS and multivariate pattern recognition. Chapter 4 presents a unique "top-down" proteomics approach using 15N-labeled bacteriophage amplification coupled with MALDI-TOF MS as a detector for the rapid and selective identification of Staphylococcus aureus. Chapter 5 extends the idea of using isotopically labeled bacteriophage amplification by implementing a "bottom-up" proteomics approach that not only identifies S. aureus in a sample, but also quantifies the bacterial concentration in the sample using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI/MS/MS) as a detector. In conclusion, Chapter 6, summarizes and contextualizes the work presented in this dissertation, and outlines how future research can build upon the experimentation detailed in this document.
|
226 |
Shiga toxin-producing bacteriophage in Escherichia coli O157:H7Hallewell, Jennyka, University of Lethbridge. Faculty of Arts and Science January 2008 (has links)
Shiga toxin-producing E. coli (STEC) including E. coli O157:H7 are potential food and water borne zoonotic bacterial pathogens capable of causing outbreaks of severe illness in humans. The virulence of E. coli O157:H7 strains may be related to the type of Stx produced and several Stx2 variants have been identified which appear to differ in their ability to cause disease. Two lineages exist within O157 strains where lineage I is associated mainly with human and bovine isolates and lineage II is associated mainly with bovine isolates. The goal of this study was to identify and characterize a lineage II EC970520 Stx2c phage and determine if variations in the phage compared to Stx2 phage found within the lineage I strain, EDL933, can result in differences in virulence observed between the lineages. This study suggests: 1) that the lineage II strain EC970520 contains a highly heterogeneous Stx2c variant phage; 2) that location of integration of the phage within the genome of a bacterium may be important for host selection; 3) that EC970520 Stx2c phage genes are lineage II specific but only a subset of EDL933 phage genes are lineage I specific; 4) that differences in the stability of phages within bacteria contribute to the evolution of new pathogens; 5) that variation in phage genes can be used to detect different strains of E. coli O157:H7 and other STEC; and 6)that the type of phage may result in phenotypic differences between lineages and occurrence of human disease. Results of this study indicate that lineage II strains may be less virulent than lineage I strains due to specific genetic differences and the ability to release phage which is important to the evolution of new pathogenic strains. / xv, 162 leaves : ill. ; 29 cm.
|
227 |
Biological and molecular characterization of South African bacteriophages infective against Staphylococcus aureus subsp. aureus Rosenbach 1884, casual agent of bovine mastitis.Basdew, Iona Hershna. 27 November 2013 (has links)
Bacteriophage therapy has been exploited for the control of bacterial diseases in fauna, flora and humans. However, the advent of antibiotic therapy lead to a cessation of most phage research. Recently, the problem of antibiotic resistance has rendered many commonly used antibiotics ineffective, thereby renewing interest in phage therapy as an alternative source of control. This is particularly relevant in the case of bovine mastitis, an inflammatory disease of bovine mammary glands, caused by strains such as Staphylococcus aureus subsp. aureus Rosenbach 1884. Antibiotic resistance (primarily towards penicillin and methicillin) by staphylococcal strains causing mastitis is regularly reported. Phage therapy can provide a stable, effective and affordable system of mastitis control with little to no deleterious effect on the surrounding environment or the affected animal itself. Several studies have delved into the field of biocontrol of bovine mastitis using phages. Results are variable. While some phage-based products have been commercialized for the treatment of S. aureus-associated infections in humans, no products have yet been formulated specifically for the strains responsible for bovine mastitis. If the reliability of phage therapy can be resolved, then phages may become a primary form of control for bovine mastitis and other bacterial diseases.
This study investigated the presence of S. aureus and its phages in a dairy environment, as well as the lytic ability of phage isolates against antibiotic-resistant strains of mastitic S. aureus. The primary goals of the thesis were to review the available literature on bovine mastitis and its associated control, and then to link this information to the use of phages as potential control agents for the disease, to conduct in vitro bioassays on the selected phages, to conduct phage sensitivity assays to assess phage activity against different chemical and environmental stresses, to morphologically classify the selected phages using transmission electron microscopy, to characterize the phage proteins using one-dimensional electrophoresis, and lastly, to characterize phage genomes, using both electrophoresis as well as full genome sequencing.
Twenty-eight phages were isolated and screened against four strains of S. aureus. Only six phages showed potential for further testing, based on their wide host range, high titres and common growth requirements. Optimal growth conditions for the host S. aureus strain was 37°C for 12hr. This allowed for optimal phage replication. At an optimal titre of between 6.2x10⁷ to 2.9x10⁸ pfu.mlˉ¹(at 10ˉ⁵ dilution of phage stock), these phages were able to reduce live bacterial cell counts by 64-95%. In addition, all six phages showed pathogenicity towards another 18 S. aureus strains that were isolated from different milk-producing regions during a farm survey. These six phages were named Sabp-P1, Sabp-P2, Sabp-P3, Sabp-P4, Sabp-P5 and Sabp-P6.
Sensitivity bioassays, towards simulated environmental and formulation stresses were conducted on six identified phages. Phages Sabp-P1, Sabp-P2 and Sabp-P3 showed the most stable replication rates at increasing temperatures (45-70°C), in comparison to phages Sabp-P4, Sabp-P5 and Sabp-P6. The effect of temperature on storage of phages showed that 4ºC was the minimum temperature at which phages could be stored without a significant reduction in their lytic and replication abilities. Furthermore, all phages showed varying levels of sensitivity to chloroform exposure, with Sabp-P5 exhibiting the highest level of reduction in activity (74.23%) in comparison to the other phages. All six phages showed optimal lytic ability at pH 6.0-7.0 and reduced activity at any pH above or below pH 6.0-7.0. Exposure of phages to varying glycerol concentrations (5-100%) produced variable results. All six phages were most stable at a glycerol concentration of 10-15%. Three of the six isolated phages, Sabp-P1, Sabp-P2 and Sabp-P3, performed optimally during the in vitro assays and were used for the remainder of the study.
Morphological classification of phages Sabp-P1, Sabp-P2 and Sabp-P3 was carried out using transmission electron microscopy. All three phages appeared structurally similar. Each possessed an icosahedral head separated from a striated, contractile tail region by a constricted neck region. The head capsules ranged in diameter between 90-110nm with the tail length ranging from 150-200nm in the non-contractile state and 100-130nm in the contractile state. Rigid tail fibres were also visible below the striated tail. The major steps in the virus replicative cycle were also documented as electron micrographs. Ultra-thin sections through phage plaques were prepared through a modification of traditional methods to speed up the process, with no negative effects on sample integrity. The major steps that were captured in the phage replicative cycle were (1) attachment to host cells, (2) replication within host cells, and, (3) release from cells. Overall results suggested that all three phages are strains from the order Caudovirales and are part of the Myoviridae family.
A wealth of information can be derived about an organism based on analysis of its proteomic data. In the current study, one-dimensional electrophoretic methods, sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), and ultra-thin layer isoelectric focusing (UTLIEF), were used to analyse the proteins of three phages, Sabp-P1, Sabp-P2 and Sabp-P3, in order to determine whether these strains differed from each other. SDS-PAGE analysis produced unique protein profiles for each phage, with band fragments ranging in size from 8.86-171.66kDa. Combined similarity matrices showed an 84.62% similarity between Sabp-P1 and Sabp-P2 and a 73.33% similarity between Sabp-P1 and Sabp-P3. Sabp-P2 showed a 69.23% similarity to Sabp-P3. UTLIEF analysis showed protein isoelectric charges in the range of pI 4.21-8.13, for all three phages. The isoelectric profiles for each phage were distinct from each other. A combined similarity matrix of both SDS-PAGE and UTLIEF data showed an 80.00% similarity between phages Sabp-P1 and Sabp-P2, and a 68.29% similarity between Sabp-P1 and Sabp-P3. Sabp-P2 showed a 70.59% similarity to Sabp-P3. Although the current results are based on putative protein fragments analysis, it can be confirmed that phages Sabp-P1, Sabp-P2 and Sabp-P3 are three distinct phages.
This was further confirmed through genomic characterization of the three staphylococcal phages, Sabp-P1, Sabp-P2 and Sabp-P3, using restriction fragment length analysis and whole genome sequencing. Results showed that the genomes of phages Sabp-P1, Sabp-P2 and Sabp-P3 were all different from each other. Phages Sabp-P1 and Sabp-P3 showed sequence homology to a particular form of Pseudomonas phages, called "giant" phages. Phage Sabp-P3 showed sequence homology to a Clostridium perfringens phage. Major phage functional proteins (the tail tape measure protein, virion structural proteins, head morphogenesis proteins, and capsid proteins) were identified in all three phages. However, although the level of sequence similarity between the screened phages and those already found on the databases, enabled preliminary classification of the phages into the order Caudovirales, family Myoviridae, the level of homology was not sufficient enough to assign each phage to a particular type species. These results suggest that phage Sabp-P1 might be a new species of phage within the Myoviridae family. One longer-term objective of the study is to carry out complete assembly and annotation of all the contigs for each phage. This will provide definitive conclusions in terms of phage relatedness and classification. / Thesis (Ph.D.)-University of KwaZulu-Natal, Pietermaritzburg, 2012.
|
228 |
Engineering antibodies against complex platelet antigens using phage display technologyDe Leon, Ellen Jane, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2007 (has links)
Platelets are small anucleate cell fragments found in blood whose physiological role is important in maintaining haemostasis. In vivo, platelet surface glycoproteins mediate the mechanistic roles of platelets, and polymorphic changes to these glycoproteins have been observed to have significant effects on the platelet cellular function and such changes may include over-expression, under-expression and antigenicity of the protein. Human platelet antigens (HPA) are a result of polymorphic differences in platelet surface glycoproteins which have been found to be variably expressed in the population. Foetal maternal alloimmune thrombocytopaenia (FMAIT) is a condition that is observed in the unborn foetus and neonates due to HPA incompatibility between the mother and the foetus. HPA incompatibility accounts for a majority of severe thrombocytopaenic cases in neonates, and delayed diagnosis and treatment of such a condition often lead to intracranial haemorrhage. The risk in neonates diagnosed with FMAIT becomes increasingly significant in cases where intra-uterine (during pregnancy) platelet transfusion is the only effective therapeutic option. There are currently no antenatal screening programs for this condition, and laboratory diagnosis of FMAIT relies on the detection of maternal alloantibodies and parental HPA typing. For these reasons a significant amount of research is currently being invested into the isolation of recombinant antibodies with specific reactivity against FMAIT-related platelet antigens. Stable and specific recombinant platelet antibodies have great potential as a diagnostic agent in antenatal screening and broad-scale HPA typing of blood donors for platelet transfusion. Further characterisation of the isolated antibody may lead to a possible therapeutic agent. Studies by previous researchers have shown that the traditional methods (ie. Mouse monoclonal and EBV transformation) of obtaining monoclonal antibodies against FMAIT-related antigens have proven unsuccessful. The continuing progress in the discipline of phage display has produced several novel antibodies against self and non-self antigens. A further advantage in the application of phage display technology for the isolation of novel antibodies is the easy transition from bacterial to mammalian expression for the characterisation of glycosylated antibodies. The main focus of this project was to create and isolate a recombinant human anti-HPA-3a antibody using phage display for its possible application as a therapeutic or diagnostic agent.
|
229 |
Bacteriophage SfII mediated serotype conversion in Shigella flexneri / by Maria Mavris.Mavris, Maria January 1998 (has links)
Includes bibliography (27 leaves). / 109, [160] leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The isolation of bacteriophage SfII has provided information regarding the molecular mechanism by which modifications are carried out by the serotype converting bacteriophages of S. flexneri. / Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1998?
|
230 |
Ammonia based sanitation technology : safe plant nutrient recovery from source separated human excreta /Nordin, Annika, January 2007 (has links) (PDF)
Lic.-avh. Uppsala : Sveriges lantbruksuniv. / Härtill 3 uppsatser.
|
Page generated in 0.0832 seconds