201 |
Difference properties for Banach-valued functions /Koehl, Frederick Stephen January 1968 (has links)
No description available.
|
202 |
Banach spaces of martingales in connection with Hp-spaces.Klincsek, T. Gheza January 1973 (has links)
No description available.
|
203 |
Variational Convex AnalysisBotelho, Fabio Silva 03 August 2009 (has links)
This work develops theoretical and applied results for variational convex analysis. First we present the basic tools of analysis necessary to develop the core theory and applications.
New results concerning duality principles for systems originally modeled by non-linear differential equations are shown in chapters 9 to 17. A key aspect of this work is that although the original problems are non-linear with corresponding non-convex variational formulations, the dual formulations obtained are almost always concave and amenable to numerical computations. When the primal problem has no solution in the classical sense, the solution of dual problem is a weak limit of minimizing sequences, and the evaluation of such average behavior is important in many practical applications. Among the results we highlight the dual formulations for micro-magnetism, phase transition models, composites in elasticity and conductivity and others. To summarize, in the present work we introduce convex analysis as an interesting alternative approach for the understanding and computation of some important problems in the modern calculus of variations. / Ph. D.
|
204 |
Diferenciabilidad en espacios de BanachBenítez López, Julio 16 June 2009 (has links)
Esta Tesis se centra en el estudio de la diferenciabilidad de Funciones definidas sobre subconjuntos de espacios de Banach, en especial se estudian las funciones convexas y continuas y más concretamente la norma. Se demuestra la íntima relación entre los diferentes tipos de diferenciabilidad (Fréchet, Gâteaux, fuertemente subdiferenciable, bastante suave, ...) y la estructura topológica de los Espacioes de Banach donde están definidas las funciones (espacios de Asplund, separabilidad, el espacio dual no tiene subespacioes propios normantes, normas ásperas...) Se concluye la Tesis con el estudio de la relación entre las propiedades topológicas anteriormetne dichas y la inmersión de subconjuntos débil-* homeomorfos al conjunto ternario de Cantor en la esfera unidad del dual. / Benítez López, J. (2000). Diferenciabilidad en espacios de Banach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/5422
|
205 |
Weighted Banach spaces of harmonic functionsZarco García, Ana María 26 October 2015 (has links)
[EN] The Ph.D. thesis "Weighted Banach Spaces of harmonic functions" presented here, treats several topics of functional analysis such as weights, composition operators, Fréchet and Gâteaux differentiability of the norm and isomorphism classes.
The work is divided into four chapters that are preceded by one in which we introduce the notation and the well-known properties that we use in the proofs in the rest of the chapters.
In the first chapter we study Banach spaces of harmonic functions on open sets of R^d endowed with weighted supremun norms. We define the harmonic associated weight, we explain its properties, we compare it with the holomorphic associated weight introduced by Bierstedt, Bonet and Taskinen, and we find differences and conditions under which they are exactly the same and conditions under which they are equivalent.
The second chapter is devoted to the analysis of composition operators with holomorphic symbol between weighted Banach spaces of pluriharmonic functions. We characterize the continuity, the compactness and the essential norm of composition operators among these spaces in terms of their weights, thus extending the results of Bonet, Taskinen, Lindström, Wolf, Contreras, Montes and others for composition operators between spaces of holomorphic functions. We prove that for each value of the interval [0,1] there is a composition operator between weighted spaces of harmonic functions such that its essential norm attains this value.
Most of the contents of Chapters 1 and 2 have been published by E. Jordá and the author in [48].
The third chapter is related with the study of Gâteaux and Fréchet differentiability of the norm. The \v{S}mulyan criterion states that the norm of a real Banach space X is
Gâteaux differentiable at x\inX if and only if there exists x^* in the unit ball of the dual of X weak^* exposed by x and the norm is Fréchet differentiable at x if and only if x^* is weak^* strongly exposed in the unit ball of the dual of X by x.
We show that in this criterion the unit ball of the dual of X can be replaced by a smaller convenient set, and we apply this extended criterion to characterize the points of Gâteaux and Fréchet differentiability of the norm of some spaces of harmonic functions and continuous functions with vector values.
Starting from these results we get an easy proof of the theorem about the Gâteaux differentiability of the norm for spaces of compact linear operators announced by Heinrich and published without proof.
Moreover, these results allow us to obtain applications to classical Banach spaces as the space H^\infty of bounded holomorphic functions in the disc and the algebra A(\overline{\D}) of continuous functions on \overline{\D} which are holomorphic on \D.
The content of this chapter has been included by E. Jordá and the author in [47].
Finally, in the forth chapter we show that for any open set U of R^d and weight v on U, the space hv0(U) of harmonic functions such that multiplied by the weight vanishes at the boundary on U is almost isometric to a closed subspace of c0, extending a theorem due to Bonet and Wolf for the spaces of holomorphic functions Hv0(U) on open sets U of C^d.
Likewise, we also study the geometry of these weighted spaces inspired by a work of Boyd and Rueda, examining topics such as the v-boundary and v-peak points and we give the conditions that provide examples where hv0(U) cannot be isometric to c0. For a balanced open set U of R^d, some geometrical conditions in U and convexity in the weight v ensure that hv0(U) is not rotund. These results have been published by E. Jordá and the author [46]. / [ES] La presente memoria, "Espacios de Banach ponderados de funciones armónicas ", trata diversos tópicos del análisis funcional, como son las funciones peso, los operadores de composición, la diferenciabilidad Fréchet y Gâteaux de la norma y las clases de isomorfismos.
El trabajo está dividido en cuatro capítulos precedidos de uno inicial en el que introducimos la notación y las propiedades conocidas que usamos en las demostraciones del resto de capítulos.
En el primer capítulo estudiamos espacios de Banach de funciones armónicas en conjuntos abiertos de R^d dotados de normas del supremo ponderadas. Definimos el peso asociado armónico, explicamos sus propiedades, lo comparamos con el peso asociado holomorfo introducido por Bierstedt, Bonet y Taskinen, y encontramos diferencias y condiciones para que sean exactamente iguales y condiciones para que sean equivalentes.
El capítulo segundo está dedicado al análisis de los operadores de composición con símbolo holomorfo entre espacios de Banach ponderados de funciones pluriarmónicas. Caracterizamos la continuidad, la compacidad y la norma esencial de operadores de composición entre estos espacios en términos de los pesos, extendiendo los resultados de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes y otros para operadores de composición entre espacios de funciones holomorfas. Probamos que para todo valor del intervalo [0,1] existe un operador de composición sobre espacios ponderados de funciones armónicas tal que su norma esencial alcanza dicho valor.
La mayoría de los contenidos de los capítulos 1 y 2 han sido publicados por E. Jordá y la autora en [48].
El capítulo tercero está relacionado con el estudio de la diferenciabilidad Gâteaux y Fréchet de la norma. El criterio de \v{S}mulyan establece que la norma de un espacio de Banach real X es Gâteaux diferenciable en x\in X si y sólo si existe x^* en la bola unidad del dual de X débil expuesto por x y la norma es Fréchet diferenciable en x si y sólo si x^*es débil fuertemente expuesto en la bola unidad del dual de X por x.
Mostramos que en este criterio la bola del dual de X puede ser reemplazada por un conjunto conveniente más pequeño, y aplicamos este criterio extendido para caracterizar los puntos de diferenciabilidad Gâteaux y Fréchet de la norma de algunos espacios de funciones armónicas y continuas con valores vectoriales. A partir de estos resultados conseguimos una prueba sencilla del teorema sobre la diferenciabilidad Gâteaux de la norma de espacios de operadores lineales compactos enunciado por Heinrich y publicado sin la prueba. Además, éstos nos permiten obtener aplicaciones para espacios de Banach clásicos como H^\infty de funciones holomorfas acotadas en el disco y A(\overline{\D}) de funciones continuas en \overline{\D} que son holomorfas en \D.
Los contenidos de este capítulo han sido incluidos por E. Jordá y la autora en [47].
Finalmente, en el capítulo cuarto mostramos que para cualquier abierto U contenido en R^d y cualquier peso v en U, el espacio hv0(U), de funciones armónicas tales que multiplicadas por el peso desaparecen en el infinito de U, es casi isométrico a un subespacio cerrado de c0, extendiendo un teorema debido a Bonet y Wolf para los espacios de funciones holomorfas Hv0(U) en abiertos U de C^d. Así mismo, inspirados por un trabajo de Boyd y Rueda también estudiamos la geometría de estos espacios ponderados examinando tópicos como la v-frontera y los puntos v-peak y damos las condiciones que proporcionan ejemplos donde hv0(U) no puede ser isométrico a c0. Para un conjunto abierto equilibrado U de R^d, algunas condiciones geométricas en U y sobre convexidad en el peso v aseguran que hv0(U) no es rotundo. Estos resultados han sido publicados por E. Jordá y la autora en [46]. / [CA] La present memòria, "Espais de Banach ponderats de funcions harmòniques", tracta diversos tòpics de l'anàlisi funcional, com són les funcions pes, els operadors de composició, la diferenciabilitat Fréchet i Gâteaux de la norma i les clases d'isomorfismes. El treball està dividit en quatre capítols precedits d'un d'inicial en què introduïm la notació i les propietats conegudes que fem servir en les demostracions de la resta de capítols.
En el primer capítol estudiem espais de Banach de funcions harmòniques en conjunts oberts de R^d dotats de normes del suprem ponderades. Definim el pes associat harmònic, expliquem les seues propietats, el comparem amb el pes associat holomorf introduït per
Bierstedt, Bonet i Taskinen, i trobem diferències i condicions perquè siguen exactament iguals i condicions perquè siguen equivalents.
El capítol segon està dedicat a l'anàlisi dels operadors de composició amb símbol holomorf entre espais de Banach ponderats de funcions pluriharmòniques. Caracteritzem la continuïtat, la compacitat i la norma essencial d'operadors de composició entre aquests espais en termes dels pesos, estenent els resultats de Bonet, Taskinen, Lindström, Wolf, Contreras, Montes i altres per a operadors de composició entre espais de funcions holomorfes. Provem que per a tot valor de l'interval [0,1] hi ha un operador de composició sobre espais ponderats de funcions harmòniques tal que la seua norma essencial arriba aquest valor.
La majoria dels continguts dels capítols 1 i 2 han estat publicats per E. Jordá i l'autora en [48].
El capítol tercer està relacionat amb l'estudi de la diferenciabilitat Gâteaux y Fréchet de la norma. El criteri de \v{S}mulyan estableix que la norma d'un espai de Banach real X és Gâteaux diferenciable en x\inX si i només si existeix x^* a la bola unitat del dual de X feble exposat per x i la norma és Fréchet diferenciable en x si i només si x^* és feble fortament exposat a la bola unitat del dual de X per x. Mostrem que en aquest criteri la bola del dual de X pot ser substituïda per un conjunt convenient més petit, i apliquem aquest criteri estès per caracteritzar els punts de diferenciabilitat Gâteaux i Fréchet de la norma d'alguns espais de funcions harmòniques i contínues amb valors vectorials.
A partir d'aquests resultats aconseguim una prova senzilla del teorema sobre la diferenciabilitat Gâteaux de la norma d'espais d'operadors lineals compactes enunciat per Heinrich i publicat sense la prova.
A més, aquests ens permeten obtenir aplicacions per a espais de Banach clàssics com l'espai H^\infty de funcions holomorfes acotades en el disc i l'àlgebra A(\overline{\D}) de funcions contínues en \overline{\D} que són holomorfes en \D.
Els continguts d'aquest capítol han estat inclosos per E. Jordá i l'autora en [47].
Finalment, en el capítol quart mostrem que per a qualsevol conjunt obert U de R^d i
qualsevol pes v en U, l'espai hv0(U), de funcions harmòniques tals que multiplicades pel pes
desapareixen en el infinit d'U, és gairebé isomètric a un subespai tancat de c0, estenent un teorema degut a Bonet y Wolf per als espais de funcions holomorfes Hv0(U) en oberts U de C^d.
Així mateix, inspirats per un treball de Boyd i Rueda també estudiem la geometria d'aquests espais ponderats examinant tòpics com la v-frontera i els punts v-peak i donem les condicions que proporcionen exemples on hv0(U) no pot ser isomètric a c0. Per a un conjunt obert equilibrat U de R^d, algunes condicions geomètriques en U i sobre convexitat en el pes v asseguren que hv0(U) no és rotund. Aquests resultats han estat publicats per E. Jordá i l'autora en [46]. / Zarco García, AM. (2015). Weighted Banach spaces of harmonic functions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/56461
|
206 |
Sommabilité du développement de Taylor dans les espaces de Banach de fonctions holomorphesParisé, Pierre-Olivier 27 January 2024 (has links)
Dans cette thèse, nous étudions la sommabilité du développement de Taylor de fonctions appartenant à certains espaces de Banach de fonctions holomorphes sur le disque unité. Le premier chapitre sert d'introduction à la théorie de la sommabilité dans les espaces de Banach. Nous y présentons les principaux concepts tels que la définition d'une méthode de sommabilité, la définition d'inclusion de méthodes de sommabilité et le théorème de Silverman-Toeplitz. La première partie comporte deux chapitres. Nous présentons les propriétés principales de certaines familles de méthodes de sommabilité. Plus précisément, nous présentons les principales méthodes de sommabilité étudiées dans cette thèse : les méthodes de Cesàro, les méthodes de Riesz arithmétiques et les méthodes de série de puissances dont les méthodes d'Abel généralisées, de Borel généralisées et la méthode logarithmique. Nous présentons aussi les relations entre chacune de ces méthodes lorsqu'elles sont restreintes aux suites de scalaires. La deuxième partie comporte deux chapitres et porte sur la sommabilité dans les espaces de Dirichlet pondérés D[indice ω] où ω est une fonction non-négative et surharmonique. Nous exposons brièvement ces espaces de Hilbert au premier chapitre de cette deuxième partie. Ensuite, nous montrons que les moyennes de Cesàro d'ordre α > 1/2 des sommes partielles de la série de Taylor convergent vers la fonction originale dans la norme de D[indice ω]. Lorsque α = 1/2, on montre que ce n'est plus le cas et il existe une fonction f ∈ D[indice ω] telle que les moyennes de Cesàro d'ordre α = 1/2 des sommes partielles de sa série de Taylor ne sont pas bornées en norme. Ce résultat contraste grandement avec le résultat de M. Riesz pour l'espace A(D) (l'algèbre du disque) et le résultat de Hardy pour l'espace H¹ (espace de Hardy). Les résultats de cette partie ont été publiés dans le journal Complex Analysis and Operator Theory. La troisième partie a trois chapitres et traite des espaces de de Branges-Rovnyak. Après avoir présenté brièvement la théorie de ces espaces au premier chapitre de cette partie, nous démontrons qu'il existe un espace de de Branges-Rovnyak de fonctions holomorphes sur le disque unité et une fonction f de cet espace avec les propriétés suivantes : même si f peut être approximée par des polynômes dans la norme de l'espace, ni les sommes partielles, ni les moyennes de Cesàro, d'Abel, de Borel et logarithmiques ne convergent vers f dans la norme de l'espace. L'instrument principal pour démontrer ce théorème est un résultat puissant, montré dans la première partie, qui permet d'étendre aux suites de vecteurs dans un espace de Banach une propriété d'une méthode de sommabilité vraie pour les suites de scalaires. Les résultats de cette partie ont été soumis au journal Integral Equations and Operator Theory. Enfin, la dernière partie de cette thèse traite d'un cas exceptionnel d'espace de Hilbert de fonctions holomorphes sur le disque unité. En utilisant le concept de base de Markushevich et en adaptant une construction de Johnson, nous construisons un espace de Hilbert de fonctions holomorphes sur le disque unité tel que les polynômes sont denses, mais les polynômes impairs ne sont pas denses dans l'espace des fonctions impaires. Comme conséquence de ce résultat, nous montrons qu'il existe une fonction f qui n'appartient pas à la fermeture de l'espace vectoriel engendré par les sommes partielles de la série de Taylor de f. Ainsi, aucune méthode de sommabilité triangulaire appliquée aux sommes partielles ne permet d'approximer la fonction f dans la norme de l'espace. Les résultats de cette partie et quelques variantes de celui-ci ont été soumis au journal Constructive Approximation. / In this thesis, we study summability questions on the Taylor expansion of functions belonging to certain Banach spaces of holomorphic functions on the unit disk. The first chapter serves as an introduction to the theory of summability in Banach spaces. We present the main concepts such as the definition of a summability method, the definition of inclusion of summability methods and the Silverman-Toeplitz theorem in the Banach space setting. The first part consists of two chapters and presents the main properties of certain families of summability methods. More precisely, we present the main summability methods studied in this thesis : Cesàro's methods, Riesz's discrete arithmetic methods and power series methods including generalized Abel, generalized Borel and logarithmic methods. We also present the relations between each of these methods when they are restricted to sequences of scalars. The second part has two chapters and deals with summability in weighted Dirichlet spaces D[subscript ω] where ω is a non-negative superharmonic function. We briefly introduce these Hilbert spaces in the first chapter of this second part. Then we show that the Cesàro means of order α > 1/2 of the partial sums of the Taylor series converge to the original function in the norm of D[subscript ω]. When α = 1/2, we show that this is no longer the case and there exists a function f ∈ D[subscript ω] such that the Cesàro means of order α = 1/2 of the partial sums of its Taylor series are unbounded in norm. This result contrasts sharply with M. Riesz's classical result on the convergence of Cesàro means of order α > 0 in the space A(D) (the disk algebra) and Hardy's classical result on the convergence of the Cesàro means of order α > 0 in the space H¹ (the Hardy space). The results of this part have been published in the journal Complex Analysis and Operator Theory. The third part consists of three chapters and treats the de Branges-Rovnyak spaces. After having briefly presented the theory of de Branges-Rovnyak spaces in the first chapter of this part, we prove that there exists a de Branges-Rovnyak space of holomorphic functions on the unit disk and a function f belonging to this space with the following properties : even if f can be approximated by polynomials in the norm of the space, neither the partial sums, nor the Cesàro, Abel, Borel and logarithmic means converge to f in the norm of the space. The main instrument to prove this theorem is a powerful result, established in the first part, which allows extending a property of a summability method valid over sequences of scalars to the sequences of vectors in a Banach space. The results of this part have been submitted to the journal Integral Equations and Operator Theory. Finally, the last part of this thesis treats an exceptional case of Hilbert space of holomorphic functions on the unit disk. Using the concept of a Markushevich basis and by adapting a construction of Johnson, we construct a Hilbert space of holomorphic functions on the unit disk such that the polynomials are dense but the linear vector space spanned by the odd polynomials is not dense in the space of odd functions. As a consequence of this result, we show that there exists a function f which does not belong to the closure of the linear span of the partial sums of the Taylor series of f. Thus no triangular summability method applied to the partial sums can approximate the function f in the norm of the space. The results of this part and some variants of it have been submitted to the journal Constructive Approximation.
|
207 |
Determinacy of Schmidt's Game and Other Intersection GamesCrone, Logan 05 1900 (has links)
Schmidt's game, and other similar intersection games have played an important role in recent years in applications to number theory, dynamics, and Diophantine approximation theory. These games are real games, that is, games in which the players make moves from a complete separable metric space. The determinacy of these games trivially follows from the axiom of determinacy for real games,ADR, which is a much stronger axiom than that asserting all integer games are determined, AD. One of our main results is a general theorem which under the hypothesis AD implies the determinacy of intersection games which have a property allowing strategies to be simplified. In particular, we show that Schmidt's (α,β,ρ) game on R is determined from AD alone, but on Rn for n≥3 we show that AD does not imply the determinacy of this game. We then give an application of simple strategies and prove that the winning player in Schmidt's (α,β,ρ) game on R has a winning positional strategy, without appealing to the axiom of choice. We also prove several other results specifically related to the determinacy of Schmidt's game. These results highlight the obstacles in obtaining the determinacy of Schmidt's game from AD
|
208 |
Homologie et cohomologie de quelques algèbres de BanachFarhat, Yasser 20 April 2018 (has links)
Dans cette thèse, nous donnons des méthodes directes pour calculer l'homologie et la cohomologie simplicielle de quelques algèbres de Banach, sans passer par le monde cyclique. On donne deux méthodes pour l'algèbre d'un semi-groupe semitreillis, chapitres 3 et 4. Ces deux méthodes sont développées, dans les chapitres 5 et 6, pour les semi-groupes bandes. Ainsi, on obtient deux méthodes directes pour déterminer l'homologie et la cohomologie des semi-groupes bandes. Au chapitre 7, on donne une formule explicite d'homotopie de l1(Z+). On termine avec le chapitre 8, qui porte sur l'algèbre d'un semi-groupe de Cuntz, dans lequel on utilise, en particulier, une application inspirée du chapitre 7.
|
209 |
Το παράδοξο Banach-TarskiΔαλέζιος, Γεώργιος 11 October 2013 (has links)
Το παράδοξο Banach-Tarski είναι ένα εντυπωσιακό θεώρημα των καθαρών μαθηματικών που αποδείχθηκε απο τους Πολωνούς μαθηματικούς Banach και Tarski το 1924. Το θεώρημα αυτό λέει ότι μπορούμε να διαμέρισουμε οποιαδήποτε τρισδιάστατη ευκλείδεια μπάλα σε πεπερασμένα το πλήθος κομμάτια και έπειτα απο περιστροφές και μεταφορές αυτών των κομματιών να
σχηματίσουμε δύο μπάλες οι οποίες είναι πανομοιότυπες με την αρχική. Το αποτέλεσμα αυτό έχει χαρακτηριστεί ως παράδοξο ακριβώς επειδή είναι ενάντιο στις διαισθήσεις μας. Για την απόδειξη του χρησιμοποιείται ουσιωδώς το Αξίωμα της Επιλογής απο τη Θεωρία Συνόλων, το πλέον επίμαχο αξίωμα της Συνολοθεωρίας. / The Banach-Tarski paradox is a striking theorem of pure mathematics proved by Polish mathematicians Banach and Tarski in 1924. This theorem states that there exists a decomposition of the three-dimensional Euclidean ball in a finite number of non-overlapping pieces, which can then be put back together in a different way to yield two identical copies of the original ball. This result has been described as a paradox precisely because it is highly anti-intuitive. To prove this theorem one must appeal to a set theoretic axiom, the Axiom of Choice, the most controversial axiom of Set theory.
|
210 |
Points extrémaux, multi-applications et fonctionnelles intégralesBenamara, Mustapha 26 June 1975 (has links) (PDF)
.
|
Page generated in 0.0422 seconds