231 |
Tipos de holomorfia em espaços de Banach / Holomorphy types on a Banach spacesJatobá, Ariosvaldo Marques 12 August 2018 (has links)
Orientador: Jorge Tulio Mujica Ascui / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-12T04:40:55Z (GMT). No. of bitstreams: 1
Jatoba_AriosvaldoMarques_D.pdf: 617454 bytes, checksum: b1f5fca80565a5a0f7b273ed5238b6ee (MD5)
Previous issue date: 2008 / Resumo: Neste trabalho introduzimos e estudamos os espaços das funções inteiras ?-holomorfas de tipo limitado. Em particular obtemos resultados de dualidade via a transformada de Borel e provamos resultados de existência e aproximação para equações de convolução. Os resultados provados generalizam resultados anteriores deste tipo devido a C. Gupta [21], M. Matos [28] e X. Mujica [32]. Nós estudamos as relações entre o espaço Hb(E; F) das funções inteiras de tipo limitado, o espaço HNb(E; F) das funções inteiras nucleares de tipo limitado, o espaço HPIb(E; F) das funções inteiras Pietsch-integrais de tipo limitado, e o espaço HGIb (E; F) das funções inteiras Grothendieck-integrais de tipo limitado. Estendemos para o caso de funções inteiras resultados de R. Alencar [2] e R. Cilia e J. Gutierrez [10] no caso de polinômios homogêneos. / Abstract: In this work we introduce and study functions of ?-holomorphy type of bounded type. In particular we obtain a duality result via the Borel transform and we prove existence and approximation results for convolution equations. The results we prove generalize previous results of this type due to C. Gupta [21], M. Matos [28] and X. Mujica [32]. We study the relationships among the space Hb(E; F) of entire mappings of bounded type, the space HNb(E; F) of entire mappings of nuclear bounded type, the space HPIb(E; F) of entire mappings of Pietsch integral bounded type, and the space HGIb(E; F) of entire mappings of Grothendieck integral bounded type. We extend to the case of entire mappings several results due to R. Alencar [2] and R. Cilia and J. Gutiérrez [10] in the case of homogeneous polynomials. / Doutorado / Analise Funcional / Doutor em Matemática
|
232 |
A equação de Daugavet para polinômios em espaços de Banach / The Daugavet equation for polynomials on Banach spacesSantos, Elisa Regina dos, 1984- 21 August 2018 (has links)
Orientador: Jorge Tulio Ascui Mujica / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-21T23:57:51Z (GMT). No. of bitstreams: 1
Santos_ElisaReginados_D.pdf: 2025728 bytes, checksum: 9a431cb6242382a2edc9a78d9a7467e4 (MD5)
Previous issue date: 2013 / Resumo: O resumo poderá ser visualizado no texto completo da tese digital / Abstract: The abstract is available with the full electronic document / Doutorado / Matematica / Doutor em Matemática
|
233 |
Algebras de Banach de funções analiticasBertoloto, Fábio José 28 February 2005 (has links)
Orientador: Jorge Tulio Mujica Ascui / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação / Made available in DSpace on 2018-08-04T04:15:50Z (GMT). No. of bitstreams: 1
Bertoloto_FabioJose_M.pdf: 1324259 bytes, checksum: f7fd3d37bfe8d06ad156b30761402bfe (MD5)
Previous issue date: 2005 / Resumo: O principal objetivo deste trabalho é o estudo de certos espaços de Banach de funções analíticas no disco aberto unitário, conhecidos como espaços de Hardy. Um outro objetivo é o estudo das propriedades básicas de álgebras de Banach, com especial ênfase na álgebra do disco e na álgebra das funções analíticas e limitadas no disco aberto unitário / Abstract: The main objective of this work is the study of certain Banach spaces of analytic functions on the open unit disc, known as Hardy spaces. Another objective is the study of the basic properties of Banach algebras, with special emphasis in the disc algebra and the algebra of bounded analytic functions in the open unit disc / Mestrado / Matematica / Mestre em Matemática
|
234 |
Quelques problèmes de dynamique linéaire dans les espaces de Banach / A couple problems of linear dynamics in Banach spacesAugé, Jean-Matthieu 10 October 2012 (has links)
Cette thèse est principalement consacrée à des problèmes de dynamique linéaire dans les espaces de Banach. Répondant à une question récente de Hajek et Smith, on construit notamment, dans tout espace de Banach séparable, un opérateur borné tel que ses orbites tendent vers l'infini sur une partie ni vide, ni dense. On relie également, à l'aide d'un autre résultat, le module de lissité asymptotique au comportement des opérateurs bornés. / This work is mainly devoted to some problems of linear dynamics in Banach spaces. In particular, we answer a recent question of Hajek and Smith by constructing, in any separable Banach space, a bounded operator such that its orbits tending to infinity form a set which is neither empty, nor dense. We also connect the behaviour of bounded operators with the asymptotic modulus of smoothness.
|
235 |
Extensions au cadre Banachique de la notion d'opérateur de Hilbert-SchmidtAbdillah, Said Amana 26 November 2012 (has links)
Cette thèse est consacrée à l’extension au cadre Banachique de la notion d’opérateur de Hilbert-Schmidt. Dans un premier temps, on étudie d’une part les opérateurs p-sommants dans un espace de Banach X vers un autre espace de Banach Y et d’autre part, les opérateurs gamma-radonifiants dans un espace de Hilbert vers un autre espace de Banach.Dans un second temps, on s'intéresse aux opérateurs gamma-sommants dans des espaces de Banach, qui coïncident avec les opérateurs de Rademacher-bornés, ce qui nous amène aux opérateurs presque sommants. Enfin, on en déduit plusieurs généralisations naturelles de la notion d’opérateur de Hilbert-Schmidt aux espaces de Banach.-Les classes des opérateurs p-sommants de X dans Y .-La classe des opérateurs presque sommants de X dans Y qui coïncide avec la classe des opérateurs gamma-radonifiants de X dans Y.-La classe des opérateurs faible* 1-nucléaires de X dans Y. / This thesis is devoted to extending the notion of Banach Hilbert-Schmidt operator to the framework of Banach spaces. In a first step, we study p-summing operators from a Banach space X into a Banach space Y and gamma-radoniyfing operators from a Hilbert space into a Banach space. In a second step, we discuss gamma-summing operators between Banach spaces, which coincide with Rademacher-bounded operators, which leads to the notion of almost summing operators. Finally, we present serval natural generalizations of the notion of Hilbert-Schmidt operator to Banach spaces.- Classes of p-summing operators from X into Y. - The class of almost summing operators from X into Y, which coincides with the class of gamma-radoniyfing operators from X into Y.- The class of weak*1-nuclear operators from X into Y.
|
236 |
Weak and Norm Convergence of Sequences in Banach SpacesHymel, Arthur J. (Arthur Joseph) 12 1900 (has links)
We study weak convergence of sequences in Banach spaces. In particular, we compare
the notions of weak and norm convergence. Although these modes of convergence usually
differ, we show that in ℓ¹ they coincide. We then show a theorem of Rosenthal's which
states that if {𝓍ₙ} is a bounded sequence in a Banach space, then {𝓍ₙ} has a subsequence
{𝓍'ₙ} satisfying one of the following two mutually exclusive alternatives; (i) {𝓍'ₙ} is weakly
Cauchy, or (ii) {𝓍'ₙ} is equivalent to the unit vector basis of ℓ¹.
|
237 |
Infinitary Combinatorics and the Spreading Models of Banach SpacesKrause, Cory A. 05 1900 (has links)
Spreading models have become fundamental to the study of asymptotic geometry in Banach spaces. The existence of spreading models in every Banach space, and the so-called good sequences which generate them, was one of the first applications of Ramsey theory in Banach space theory. We use Ramsey theory and other techniques from infinitary combinatorics to examine some old and new questions concerning spreading models and good sequences. First, we consider the lp spreading model problem which asks whether a Banach space contains lp provided that every spreading model of a normalized block basic sequence of the basis is isometrically equivalent to lp. Next, using the Hindman-Milliken-Taylor theorem, we prove a new stabilization theorem for spreading models which produces a basic sequence all of whose normalized constant coefficient block basic sequences are good. When the resulting basic sequence is semi-normalized, all the spreading models generated by the above good sequences must be uniformly equivalent to lp or c0. Finally, we investigate the assumption that every normalized block tree on a Banach space has a good branch. This turns out to be a very strong assumption and is equivalent to the space being 1-asymptotic lp. We also show that the stronger assumption that every block basic sequence is good is equivalent to the space being stabilized 1-asymptotic lp.
|
238 |
Some compactness criteria in locally convex and banach spacesMonterde Pérez, Ignacio 27 January 2012 (has links)
Chapter 1 We study different classes of compact sets. In particular, the class of convex-compact sets is analyzed in depth. Using these classes of sets, we provide compactness criteria by checking on a quite relaxed set of conditions. In order to ensure that we are really dealing with more general notions, we pay attention to separate the classes introduced. We also provide some stability results of the classes of compact sets used. Some Valdivia and Orihuela theorems are pushed further and an extension of a theorem due to Howard is provided.
Chapter 2 We formulate some results on Banach disks and prove that every convex, relatively convex-compact subset of a locally convex space is contained in a Banach disk. We study in which cases some properties, such as separability and reflexivity, are preserved by passing to the generated Banach space.
Chapter 3 The drop property, the property (alpha) and the condition (beta) are analyzed. A single technique provides short proofs of some results about drop properties on locally convex spaces. It is shown that the quasi-drop property is equivalent to a drop property for countably closed sets. We prove that the drop and quasi-drop properties, the property (alpha) and the condition (beta) are separably determined. We also study the relation between drop property, property (alpha), condition (beta), compactness and reflexivity. / Monterde Pérez, I. (2009). Some compactness criteria in locally convex and banach spaces [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/14569
|
239 |
Spectrum preserving linear mappings between Banach algebrasWeigt, Martin 04 1900 (has links)
Thesis (MSc)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: Let A and B be unital complex Banach algebras with identities 1 and I'
respectively. A linear map T : A -+ B is invertibility preserving if Tx is
invertible in B for every invertible x E A. We say that T is unital if Tl = I'.
IfTx2 = (TX)2 for all x E A, we call T a Jordan homomorphism. We examine
an unsolved problem posed by 1. Kaplansky:
Let A and B be unital complex Banach algebras and T : A -+ B a unital
invertibility preserving linear map. What conditions on A, Band T imply
that T is a Jordan homomorphism?
Partial motivation for this problem are the Gleason-Kahane-Zelazko Theorem
(1968) and a result of Marcus and Purves (1959), these also being special
instances of the problem. We will also look at other special cases answering
Kaplansky's problem, the most important being the result stating that if A
is a von Neumann algebra, B a semi-simple Banach algebra and T : A -+ B
a unital bijective invertibility preserving linear map, then T is a Jordan
homomorphism (B. Aupetit, 2000).
For a unital complex Banach algebra A, we denote the spectrum of x E A
by Sp (x, A). Let a(x, A) denote the union of Sp (x, A) and the bounded
components of <C \ Sp (x, A). We denote the spectral radius of x E A by
p(x, A).
A unital linear map T between unital complex Banach algebras A and
B is invertibility preserving if and only if Sp (Tx, B) C Sp (x, A) for all
x E A. This leads one to consider the problems that arise when, in turn,
we replace the invertibility preservation property of T in Kaplansky's problem
with Sp (Tx, B) = Sp (x, A) for all x E A, a(Tx, B) = a(x, A) for all
x E A, and p(Tx, B) = p(x, A) for all x E A. We will also investigate
some special cases that are solutions to these problems. The most important
of these special cases says that if A is a semi-simple Banach algebra, B a
primitive Banach algebra with minimal ideals and T : A -+ B a surjective
linear map satisfying a(Tx, B) = a(x, A) for all x E A, then T is a Jordan
homomorphism (B. Aupetit and H. du T. Mouton, 1994). / AFRIKAANSE OPSOMMING: Gestel A en B is unitale komplekse Banach algebras met identiteite 1 en I'
onderskeidelik. 'n Lineêre afbeelding T : A -+ B is omkeerbaar-behoudend
as Tx omkeerbaar in B is vir elke omkeerbare element x E A. Ons sê dat T
unitaal is as Tl = I'. As Tx2 = (TX)2 vir alle x E A, dan noem ons T 'n
Jordan homomorfisme. Ons ondersoek 'n onopgeloste probleem wat deur I.
Kaplansky voorgestel is:
Gestel A en B is unitale komplekse Banach algebras en T : A -+ B is 'n
unitale omkeerbaar-behoudende lineêre afbeelding. Watter voorwaardes op
A, B en T impliseer dat T 'n Jordan homomorfisme is?
Gedeeltelike motivering vir hierdie probleem is die Gleason-Kahane-Zelazko
Stelling (1968) en 'n resultaat van Marcus en Purves (1959), wat terselfdertyd
ook spesiale gevalle van die probleem is. Ons salook na ander spesiale gevalle
kyk wat antwoorde lewer op Kaplansky se probleem. Die belangrikste van
hierdie resultate sê dat as A 'n von Neumann algebra is, B 'n semi-eenvoudige
Banach algebra is en T : A -+ B 'n unitale omkeerbaar-behoudende bijektiewe
lineêre afbeelding is, dan is T 'n Jordan homomorfisme (B. Aupetit,
2000).
Vir 'n unitale komplekse Banach algebra A, dui ons die spektrum van
x E A aan met Sp (x, A). Laat cr(x, A) die vereniging van Sp (x, A) en die
begrensde komponente van <C \ Sp (x, A) wees. Ons dui die spektraalradius
van x E A aan met p(x, A).
'n Unitale lineêre afbeelding T tussen unit ale komplekse Banach algebras
A en B is omkeerbaar-behoudend as en slegs as Sp (Tx, B) c Sp (x, A) vir
alle x E A. Dit lei ons om die probleme te beskou wat ontstaan as ons die
omkeerbaar-behoudende eienskap van T in Kaplansky se probleem vervang
met Sp (Tx, B) = Sp (x, A) vir alle x E A, O"(Tx, B) = O"(x, A) vir alle
x E A en p(Tx, B) = p(x, A) vir alle x E A, onderskeidelik. Ons salook
'n paar spesiale gevalle van hierdie probleme ondersoek. Die belangrikste
van hierdie spesiale gevalle sê dat as A 'n semi-eenvoudige Banach algebra
is, B 'n primitiewe Banach algebra met minimale ideale is, en T : A -+ B
'n surjektiewe lineêre afbeelding is sodanig dat O"(Tx, B) = O"(x, A) vir alle
x E A, dan is T 'n Jordan homomorfisme (B. Aupetit en H. du T. Mouton,
1994).
|
240 |
Spectral theory in commutatively ordered banach algebrasMuzundu, Kelvin 12 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2012. / ENGLISH ABSTRACT: See full text. / AFRIKAANSE OPSOMMING: Sien volteks.
|
Page generated in 0.0436 seconds