• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 123
  • 38
  • 17
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • Tagged with
  • 510
  • 216
  • 103
  • 92
  • 71
  • 64
  • 62
  • 50
  • 48
  • 48
  • 45
  • 43
  • 37
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

The theory of integrated empathies

Brown, Thomas John 24 August 2006 (has links)
Abstract available on page 4 of the document / Thesis (PhD (Mathematics))--University of Pretoria, 2007. / Mathematics and Applied Mathematics / unrestricted
382

Analytic and Entire Vectors for Representations of Lie Groups

Kumar, Manish January 2016 (has links) (PDF)
We start with the recollection of basic results about differential manifolds and Lie groups. We also recall some preliminary terminologies in Lie algebra. Then we define the Lie algebra corresponding to a Lie group. In the next section, we define a strongly continuous representation of a Lie group on a Banach space. We further define the smooth, analytic and entire vectors for a given representation. Then, we move on to develop some necessary and sufficient criteria to characterize smooth, analytic and entire vectors. We, in particular, take into account of some specific representations of Lie groups like the regular representation of R, the irreducible representations of Heisenberg groups, the irreducible representations of the group of Affine transformations and finally the representations of non-compact simple Lie groups.
383

An algebraic - analytic framework for the study of intertwined families of evolution operators

Lee, Wha-Suck January 2015 (has links)
We introduce a new framework of generalized operators to handle vector valued distributions, intertwined evolution operators of B-evolution equations and Fokker Planck type evolution equations. Generalized operators capture these operators. The framework is a marriage between vector valued distribution theory and abstract harmonic analysis: a new convolution algebra is the offspring. The new algebra shows that convolution is more fundamental than operator composition. The framework is complete with a Hille-Yosida theorem for implicit evolution equations for generalized operators. Feller semigroups and processes fit perfectly into the framework of generalized operators. Feller semigroups are intertwined by the Chapman Kolmogorov equation. Our framework handles more complex intertwinements which naturally arise from a dynamic boundary approach to an absorbing barrier of a fly trap model: we construct an entwined pseudo Poisson process which is a pair of stochastic processes entwined by the extended Chapman Kolmogorov equation. Similarly, we introduce the idea of an entwined Brownian motion. We show that the diffusion equation of an entwined Brownian motion involves an implicit evolution equation on a suitable scalar test space. We end off by constructing a new convolution of operator valued measures which generalizes the convolution of Feller convolution semigroups. / Thesis (PhD)--University of Pretoria, 2015. / Mathematics and Applied Mathematics / Unrestricted
384

Ecuaciones de evolución cuasi lineales. La teoría de T. Kato.

Montealegre Scott, Juan 25 September 2017 (has links)
No description available.
385

Trees and Ordinal Indices in C(K) Spaces for K Countable Compact

Dahal, Koshal Raj 08 1900 (has links)
In the dissertation we study the C(K) spaces focusing on the case when K is countable compact and more specifically, the structure of C() spaces for < ω1 via special type of trees that they contain. The dissertation is composed of three major sections. In the first section we give a detailed proof of the theorem of Bessaga and Pelczynski on the isomorphic classification of C() spaces. In due time, we describe the standard bases for C(ω) and prove that the bases are monotone. In the second section we consider the lattice-trees introduced by Bourgain, Rosenthal and Schechtman in C() spaces, and define rerooting and restriction of trees. The last section is devoted to the main results. We give some lower estimates of the ordinal-indices in C(ω). We prove that if the tree in C(ω) has large order with small constant then each function in the root must have infinitely many big coordinates. Along the way we deduce some upper estimates for c0 and C(ω), and give a simple proof of Cambern's result that the Banach-Mazur distance between c0 and c = C(ω) is equal to 3.
386

Gateaux Differentiable Points of Simple Type

Oh, Seung Jae 12 1900 (has links)
Every continuous convex function defined on a separable Banach space is Gateaux differentiable on a dense G^ subset of the space E [Mazur]. Suppose we are given a sequence (xn) that Is dense in E. Can we always find a Gateaux differentiable point x such that x = z^=^anxn.for some sequence (an) with infinitely many non-zero terms so that Ση∞=1||anxn|| < co ? According to this paper, such points are called of "simple type," and shown to be dense in E. Mazur's theorem follows directly from the result and Rybakov's theorem (A countably additive vector measure F: E -* X on a cr-field is absolutely continuous with respect to |x*F] for some x* e Xs) can be shown without deep measure theoretic Involvement.
387

Banachovy algebry / Banach Algebras

Machovičová, Tatiana January 2021 (has links)
By Banach algebra we mean Banach space enriched with a multiplication operation. It is a mathematical structure that is used in the non-periodic homogenization of composite materials. The theory of classical homogenization studies materials assuming the periodicity of the structure. For real materials, the assumption of a periodicity is not enough and is replaced by the so-called an abstract hypothesis based on a concept composed mainly of the spectrum of Banach algebra and Sigma convergence. This theory was introduced in 2004.
388

Estudio de una ecuación de onda no lineal que modela una actividad del cerebro

Pon Quispe, Julio César January 2013 (has links)
Estudia la ecuación de onda no lineal que modela la actividad neuronal del cerebro. Busca estudiar la existencia de la solución débil global del sistema dado utilizando el método de Faedo - Galerkin y además establecer la unicidad y estabilidad de la soluci´on utilizando criterios de desigualdades integrales e inmersiones de Sobolev. Los términos a(u, p)ut y b(u, p, pt) son términos no lineales que caracterizan la actividad neuronal del modelo. El estudio del sistema es planteado por Mauhamad y Maitine, quienes prueban que el sistema tiene una única solución estable, bajo supuestos datos reales. De hecho, estos supuestos están motivados por el modelo de la actividad cerebral física subyacente, que conduce a una ecuación que es un caso particular de la ecuación que se va a desenvolver. / Tesis
389

Generalized convolution operators and asymptotic spectral theory

Zabroda, Olga Nikolaievna 11 December 2006 (has links)
The dissertation contributes to the further advancement of the theory of various classes of discrete and continuous (integral) convolution operators. The thesis is devoted to the study of sequences of matrices or operators which are built up in special ways from generalized discrete or continuous convolution operators. The generating functions depend on three variables and this leads to considerably more complicated approximation sequences. The aim was to obtain for each case a result analogous to the first Szegö limit theorem providing the first order asymptotic formula for the spectra of regular convolutions.
390

Váhové prostory funkcí invariantní vůči přerovnání a jejich základní vlastnosti / Weighted rearrangement-invariant spaces and their basic properties

Soudský, Filip January 2015 (has links)
In this thesis we shall provide the reader with results in the field of classical Lorentz spaces. These spaces have been studied since the 50's and have many applications in partial differential equations and interpolation theory. This work includes five papers. First paper studies the properties of Generalized Gamma spaces. Second paper provides an alternative proof of normability characterization of classical Lorentz spaces. The third paper discus conditions of linearity and quasi-norm property of rearrangement-invariant lattices. The following paper gives a characterization of normability of Gamma spaces. And finally the last paper characterizes the embeddings between Generalized Gamma spaces. Powered by TCPDF (www.tcpdf.org)

Page generated in 0.0885 seconds