• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 221
  • 123
  • 38
  • 17
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • Tagged with
  • 510
  • 216
  • 103
  • 92
  • 71
  • 64
  • 62
  • 50
  • 48
  • 48
  • 45
  • 43
  • 37
  • 34
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

REPRESENTATIONS DE GROUPES TOPOLOGIQUES ET ETUDE SPECTRALE D'OPERATEURS DE DECALAGE UNILATERAUX ET BILATERAUX

Dubernet, Sébastien 15 December 2005 (has links) (PDF)
Dans un premier temps, nous étudions la continuité d'une <br />représentation $\theta$ du groupe topologique $G$ dans une algèbre de Banach $A$ en fonction du comportement de $\limsup_{u \rightarrow 1}\| \theta(u)-I \|$, où $1$ désigne l'élément unité de $G$ et $I$ celui de $A$. Nous obtenons aussi des résultats de continuité automatique pour une large catégorie de représentations de groupes. <br /><br />Nous étudions ensuite, dans des cas concrets le spectre de l'opérateur $S_M: E/M \rightarrow E/M$ défini par $S(f+M)=Sf +M$, c'est-à-dire la compression de $S$ à $E/M$ où $E$ est un espace de Banach, $S:E \rightarrow E$ un opérateur borné et $M$ un sous-espace vectoriel fermé invariant par $S$, c'est-à-dire vérifiant $S(M) \subset M$. D'abord nous nous plaçons dans des espaces de Banach $E$ de fonctions analytiques sur le disque unité pour lesquels le shift usuel $S:z \mapsto zf$ et le shift arrière $T: f \mapsto \frac{f-f(0)}{z}$ ont leur spectre égal au cercle unité et vérifient la condition de non-quasianalyticité. Nous montrons que si $f \in M$ admet une extension analytique à $\D \cup D(\zeta,r)$, avec $|\zeta|=1$, $f(\zeta)\neq 0$, alors $\zeta \notin Spec(S_M)$. Nous appliquons ce résultat à l'espace de Hardy pondéré $H_{\sigma_{\alpha}}(\D)$, avec $\sigma_{\alpha}(n)=e^{-n^{\alpha}}$, $n \geq 0$, $\alpha \in (\frac{1}{2},1)$.<br /><br />Enfin nous étudions une situation quasianalytique, celle des espaces $l^2(w,\Z)$ à poids "$\log$-impairs". Soit $L$ un arc fermé non vide du cercle unité; nous montrons que la construction de Y.Domar de sous-espaces invariants par translations pour les espaces $l^2(w,\Z)$ vérifiant une condition naturelle de régularité, permet d'obtenir des sous-espaces $M_L$ tels que $Spec (S_{M_L})=L$, où $S: (u_n)_{n \in \Z} \mapsto (u_{n-1})_{n \in \Z}$ désigne le shift bilatéral usuel sur $l^2(w,\Z)$.
422

Bases orthonormales et calcul ombral en analyse p-adique

Tangara, Fana 04 September 2006 (has links) (PDF)
Soient p un nombre premier, Zp l'anneau des entiers p-adiques, Qp le corps des nombres p-adiques et K un sur-corps valué complet de Qp. Soit C(Zp,K) l'algèbre de Banach des fonctions continues de Zp dans K munie de la norme de la convergence uniforme et soit q appartenant à K tel que Iq-1I<1. K. Conrad établit un q-analogue de la base de Mahler. A l'aide de ce dévelopement, utilisant les techniques de calcul ombral, nous établissons une correspondance bijective, d'un côté entre une classe de q-bases orthonormales de C(Zp,K) et une classe d'opérateurs commutant avec l'opérateur de translation r1 tel que r1(f)(x)=f(x+1) et une autre entre une classe de q-bases orthogonales de C(Zp,K) et une classe d'opérateurs commutant avec la q-dérivation de Jackson. Nous obtenons une réalisation du plan quantique et de l'algèbre de Weyl à deux générareurs sous forme concrète d'algèbres d'opérateurs. Nous faisons quelques calculs de normes de ces opérateurs et nous exhibons une famille orthogonale pour l'algèbre de Weyl quantique. Nous obtenons des conditions nécessaires et suffisantes sur les coefficients du développement de Conrad pour qu'une fonction continue soit strictement différentiable, d'abord lorsque q est non racine de l'unité, ensuite lorsque q est une racine primitive de l'unité d'ordre une puissance pN de p. Comme application nous donnons une q-version de l'intégrale de Volkenborn
423

Propriété (T) et morphisme de Baum-Connes tordus par une représentation non unitaire

Gomez Aparicio, Maria Paula 14 December 2007 (has links) (PDF)
Ma thèse concerne des variantes de la propriété (T) de Kazhdan et de la conjecture de Baum-Connes tordues par des représentations de dimension finie qui ne sont pas nécessairement unitaires.<br />Soit G un groupe localement compact et (rho,V) une représentation de dimension finie non nécessairement unitaire de G.<br />Dans le Chapitre 1, nous avons défini un renforcement de la propriété (T) en considérant des produits tensoriels par rho de représentations unitaires de G. Nous avons alors défini deux algèbres de Banach de groupe tordues, Amax(rho) et A(rho), analogues aux C*-algèbres de groupe, C*(G) et C*r(G), et nous avons défini la propriété (T) tordue par rho en termes de Amax(rho). Nous avons ensuite montrer que la plupart des groupes de Lie semi-simples réels ayant la propriété (T) ont la propriété (T) tordue par n'importe quelle représentation irréductible de dimension finie.<br />Les Chapitres 2 et 3 sont consacrés au calcul de la K-théorie des algèbres tordues. Pour ceci, Nous avons défini deux applications d'assemblage tordues du membre de gauche du morphisme de Baum-Connes, noté Ktop(G), dans la K-théorie des algèbres tordues. Nous avons ensuite montrer, dans le Chapitre 3, que ce morphisme de Baum-Connes tordu est bijectif pour une large classe de groupes vérifiant la conjecture de Baum-Connes.<br />Dans le Chapitre 4, nous avons montré que le domaine de définition naturel d'un analogue en K-théorie du produit tensoriel par une représentation de dimension finie est la K-théorie des algèbres tordues et non pas la K-théorie des C*-algèbres de groupe.
424

Plongements des espaces métriques dans les espaces de Banach.

Baudier, Florent 02 February 2009 (has links) (PDF)
Le thème central de cette thèse est le plongement des espaces métriques dans les espaces de Banach. Les principaux plongements étudiés sont les plongements grossiers, uniformes ou Lipschitziens. On considère des questions concernant le plongement Lipschitzien de certaines classes d'espaces métriques, notamment les espaces métriques localement finis ou plus généralement les sous-ensembles localement finis des espaces de Banach Lp, avec 1<= p <= [infini]. Ces questions sont étroitement liées à la classification Lipschitzienne des espaces de Banach. Les plongements grossiers sont un outil clé pour l'étude de plusieurs conjectures célèbres (conjecture de Baum-Connes grossière, conjecture de Novikov grossière...). On mène alors une étude détaillée du plongement grossier, mais aussi uniforme, des espaces métriques propres dans les espaces de Banach sans cotype. Un troisième thème concerne ce qui est appelé le “programme de Ribe” par Manor Mendel et Assaf Naor. Cela consiste en la recherche d'invariants métriques qui caractérisent des propriétés locales des espaces de Banach. Dans cette optique on étudie le plongement de certains arbres.
425

Ideals and Boundaries in Algebras of Holomorphic Functions

Carlsson, Linus January 2006 (has links)
<p>We investigate the spectrum of certain Banach algebras. Properties</p><p>like generators of maximal ideals and generalized Shilov boundaries are studied. In particular we show that if the ∂-equation has solutions in the algebra of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ C<sup>n</sup> then every maximal ideal over D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the projection on Cn of the n − 1 order generalized Shilov boundary is contained in the boundary of D.</p><p>For a domain D ⊂⊂ C<sup>n</sup> where the boundary of the Nebenhülle coincide</p><p>with the smooth strictly pseudoconvex boundary points of D we show that there always exist points p ∈ D such that D has the Gleason property at p.</p><p>If the boundary of an open set U is smooth we show that there exist points in</p><p>U such that the maximal ideals over those points are generated by the coordinate functions.</p><p>An example is given of a Riemann domain, Ω, spread over C<sup>n</sup> where the fibers over a point p ∈ Ω consist of m > n elements but the maximal ideal over p is generated by n functions.</p>
426

Régularité et description des spectres pour les représentations de groupes topologiques

Cianfarani, Mathieu 29 November 2012 (has links) (PDF)
Dans ce travail, on commence par donner des critères de continuité automatique pour des représentations de groupes topologiques dans des algèbres de Banach. Deux approches différentes sont présentées : l'une utilisant la décomposition de Glicksberg-De Leeuw s'applique aux groupes localement compacts, l'autre, basée sur un résultat d'équicontinuité de suites de fonctions de type positif, aux groupes polonais (non forcément localement compacts). Typiquement, on exprime la continuité d'une représentation par celle de ses composées par des formes linéaires continues sur l'algèbre de représentation. On déduit de ce qui précède des résultats de continuité automatique de morphismes de groupes topologiques. Dans une seconde partie, on applique les résultats de la première pour obtenir des propriétés d'étalement du spectre des éléments de l'image de la représentation en dehors d'un sous-ensemble " petit " en divers sens du groupe dans le cas abélien. La troisième partie généralise partiellement les résultats de la seconde au cas des groupes de Lie (non abéliens en précisant ainsi, dans ce cas, un théorème obtenu par J.M. Paoli et J.C. Tomasi. Mots clefs : Groupes localement compacts, groupes polonais, groupes de Lie, Algèbres de Banach, représentations de groupes, continuité automatique, spectre d'opérateurs.
427

Ideals and boundaries in Algebras of Holomorphic functions

Carlsson, Linus January 2006 (has links)
We investigate the spectrum of certain Banach algebras. Properties like generators of maximal ideals and generalized Shilov boundaries are studied. In particular we show that if the ∂-equation has solutions in the algebra of bounded functions or continuous functions up to the boundary of a domain D ⊂⊂ Cn then every maximal ideal over D is generated by the coordinate functions. This implies that the fibres over D in the spectrum are trivial and that the projection on Cn of the n − 1 order generalized Shilov boundary is contained in the boundary of D. For a domain D ⊂⊂ Cn where the boundary of the Nebenhülle coincide with the smooth strictly pseudoconvex boundary points of D we show that there always exist points p ∈ D such that D has the Gleason property at p. If the boundary of an open set U is smooth we show that there exist points in U such that the maximal ideals over those points are generated by the coordinate functions. An example is given of a Riemann domain, Ω, spread over Cn where the fibers over a point p ∈ Ω consist of m &gt; n elements but the maximal ideal over p is generated by n functions.
428

Invertibility of a Class of Toeplitz Operators over the Half Plane

Vasilyev, Vladimir 07 February 2007 (has links) (PDF)
This dissertation is concerned with invertibility and one-sided invertibility of Toeplitz operators over the half plane whose generating functions admit homogenous discontinuities, and with stability of their pseudo finite sections. The invertibility criterium is given in terms of invertibility of a family of one dimensional Toeplitz operators with piecewise continuous generating functions. The one-sided invertibility criterium is given it terms of constraints on the partial indices of certain Toeplitz operator valued function.
429

Three Topics in Analysis: (I) The Fundamental Theorem of Calculus Implies that of Algebra, (II) Mini Sums for the Riesz Representing Measure, and (III) Holomorphic Domination and Complex Banach Manifolds Similar to Stein Manifolds

Mathew, Panakkal J 13 May 2011 (has links)
We look at three distinct topics in analysis. In the first we give a direct and easy proof that the usual Newton-Leibniz rule implies the fundamental theorem of algebra that any nonconstant complex polynomial of one complex variable has a complex root. Next, we look at the Riesz representation theorem and show that the Riesz representing measure often can be given in the form of mini sums just like in the case of the usual Lebesgue measure on a cube. Lastly, we look at the idea of holomorphic domination and use it to define a class of complex Banach manifolds that is similar in nature and definition to the class of Stein manifolds.
430

"Operator ideals on ordered Banach spaces"

Spinu, Eugeniu Unknown Date
No description available.

Page generated in 0.0756 seconds