• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sur les groupes pleins préservant une mesure de probabilité

Le Maître, François 12 May 2014 (has links) (PDF)
Soit (X, μ) un espace de probabilité standard et Γ un groupe dénombrable agissant sur X de manière à préserver la mesure de probabilité (p.m.p.). La partition de l'espace X en orbites induite par l'action de Γ est entièrement encodée par le groupe plein de l'action, constitué de l'ensemble des bijections boréliennes de l'espace qui agissent par permutation sur chaque orbite. Plus précisément, le théorème de reconstruction de H. Dye stipule que deux actions p.m.p. sont orbitalement équivalentes (i.e. induisent la même partition à une bijection p.m.p. près) si et seulement si leurs groupes pleins sont isomorphes.Le sujet de cette thèse est grandement motivé par ce théorème de reconstruction, puisqu'il s'agit de voir comment des invariants d'équivalence orbitale, qui portent donc sur la partition de l'espace en orbites, se traduisent en des propriétés algébriques ou topologiques du groupe plein associé.Le résultat majeur porte sur le rang topologique des groupes pleins, c'est-à-dire le nombre minimum d'éléments nécessaires pour engendrer un sous-groupe dense. Il se trouve être fortement relié a un invariant fondamental d'équivalence orbitale : le coût. Plus précisément, nous avons montré que le rang topologique était, dans le cas ergodique, égal à la partie entière du coût de l'action plus un. Le cas non ergodique a également été étudié, et on a obtenu des résultats complémentaires sur la généricité de l'ensemble des générateurs topologiques.Enfin, on a caractérisé les actions dont toutes les orbites sont infinies : ce sont exac- tement celles dont le groupe plein n'admet aucun morphisme non trivial à valeurs dans Z/2Z.
2

Régularité et description des spectres pour les représentations de groupes topologiques

Cianfarani, Mathieu 29 November 2012 (has links) (PDF)
Dans ce travail, on commence par donner des critères de continuité automatique pour des représentations de groupes topologiques dans des algèbres de Banach. Deux approches différentes sont présentées : l'une utilisant la décomposition de Glicksberg-De Leeuw s'applique aux groupes localement compacts, l'autre, basée sur un résultat d'équicontinuité de suites de fonctions de type positif, aux groupes polonais (non forcément localement compacts). Typiquement, on exprime la continuité d'une représentation par celle de ses composées par des formes linéaires continues sur l'algèbre de représentation. On déduit de ce qui précède des résultats de continuité automatique de morphismes de groupes topologiques. Dans une seconde partie, on applique les résultats de la première pour obtenir des propriétés d'étalement du spectre des éléments de l'image de la représentation en dehors d'un sous-ensemble " petit " en divers sens du groupe dans le cas abélien. La troisième partie généralise partiellement les résultats de la seconde au cas des groupes de Lie (non abéliens en précisant ainsi, dans ce cas, un théorème obtenu par J.M. Paoli et J.C. Tomasi. Mots clefs : Groupes localement compacts, groupes polonais, groupes de Lie, Algèbres de Banach, représentations de groupes, continuité automatique, spectre d'opérateurs.
3

Sur les groupes pleins préservant une mesure de probabilité / On probability measure preserving full groups

Le Maître, François 12 May 2014 (has links)
Soit (X, μ) un espace de probabilité standard et Γ un groupe dénombrable agissant sur X de manière à préserver la mesure de probabilité (p.m.p.). La partition de l’espace X en orbites induite par l’action de Γ est entièrement encodée par le groupe plein de l’action, constitué de l’ensemble des bijections boréliennes de l’espace qui agissent par permutation sur chaque orbite. Plus précisément, le théorème de reconstruction de H. Dye stipule que deux actions p.m.p. sont orbitalement équivalentes (i.e. induisent la même partition à une bijection p.m.p. près) si et seulement si leurs groupes pleins sont isomorphes.Le sujet de cette thèse est grandement motivé par ce théorème de reconstruction, puisqu’il s’agit de voir comment des invariants d’équivalence orbitale, qui portent donc sur la partition de l’espace en orbites, se traduisent en des propriétés algébriques ou topologiques du groupe plein associé.Le résultat majeur porte sur le rang topologique des groupes pleins, c’est-à-dire le nombre minimum d’éléments nécessaires pour engendrer un sous-groupe dense. Il se trouve être fortement relié a un invariant fondamental d’équivalence orbitale : le coût. Plus précisément, nous avons montré que le rang topologique était, dans le cas ergodique, égal à la partie entière du coût de l’action plus un. Le cas non ergodique a également été étudié, et on a obtenu des résultats complémentaires sur la généricité de l’ensemble des générateurs topologiques.Enfin, on a caractérisé les actions dont toutes les orbites sont infinies : ce sont exac- tement celles dont le groupe plein n’admet aucun morphisme non trivial à valeurs dans Z/2Z. / Let (X,μ) be a standard probability space and Γ a countable group acting on X in a measure preserving way. The partition of the space X into Γ-orbits is entirely encoded by the full group of the action, consisting of all the Borel bijections of X which act by permutation on every orbit. To be more precise, Dye’s reconstruction theorem states that two measure preserving actions are orbit equivalent (i.e. they induce the same partition up to a measure preserving bijection of (X, μ)) if and only if their full groups are isomorphic.The reconstruction theorem is the main motivation for this thesis, in which we try to understand how exactly orbit equivalence invariants of measure preserving actions translate into algebraic or topological properties of the associated full group.The main result deals with the topological rank of full groups, that is the minimal number of elements needed to generate a dense subgroup. It happens to be deeply linked to a fundamental invariant of orbit equivalence : the cost. To be more precise, we have shown that the topological rank is, in the ergodic case, equal to the integer part of the cost of the action plus one. The non-ergodic case was also treated, and we obtained some genericity results for the set of topological generators.We also obtained a characterization of the measure preserving actions having only infinite orbits : these are the ones whose full group has non nontrivial morphism into Z/2Z.
4

Structures métriques et leurs groupes d’automorphismes : reconstruction, homogénéité, moyennabilité et continuité automatique / Metric structures and their automorphism groups : reconstruction, homogeneity, amenability and automatic continuity

Kaïchouh, Adriane 26 June 2015 (has links)
Cette thèse porte sur l'étude des groupes polonais vus comme groupes d'automorphismes de structures métriques. L'observation que tout groupe polonais non archimédien est le groupe d'automorphismes d'une structure dénombrable ultra homogène a en effet mené à des interactions fructueuses entre la théorie des groupes et la théorie des modèles. Dans le cadre de la théorie des modèles métriques, introduite par Ben Yaacov, Henson et Usvyatsov, cette correspondance a été étendue par Melleray à tous les groupes polonais. Dans cette thèse, nous étudions diverses facettes de cette correspondance. Le lien entre une structure et son groupe d automorphismes est particulièrement étroit dans le cadre des structures ℵ0-categoriques. En effet, le théorème de reconstruction d'Ahlbrandt-Ziegler permet de retrouver une structure ℵ0-categorique, à bi-interprètabilité près, à partir de son groupe d'automorphismes. Dans un travail en commun avec Itai Ben Yaacov, nous généralisons ce résultat aux structures métriques separablement catégoriques. Les structures dénombrables ultra homogènes ont de plus l avantage d'être complètement déterminées par leurs sous-structures finiment engendrées. Cela a notamment permis a Moore de donner une caractérisation combinatoire de la moyennabilité des groupes polonais non archimédiens. Nous étendons cette caractérisation à tous les groupes polonais et nous en déduisons que la moyennabilite est une condition Gδ. Toujours dans une optique de reconstruction, nous nous intéressons à la propriété de continuité automatique pour les groupes polonais. Sabok et Malicki ont introduit des conditions de nature combinatoire sur une structure métrique ultra homogène qui impliquent la propriété de continuité automatique pour son groupe d'automorphismes. Nous montrons que ces conditions passent à la puissance dénombrable, ce qui a pour conséquence que les groupes Aut(μ)N, U(l2)N et Iso(U)N satisfont la propriété de continuité automatique. Ces conditions sont un affaiblissement du fait d'avoir des amples génériques. Dans un travail en commun avec Francois Le Maitre, nous exhibons les premiers exemples de groupes connexes qui ont des amples génériques, ce qui répond à une question de Kechris et Rosendal / This thesis focuses on the study of Polish groups seen as automorphism groups of metric structures. The observation that every non-archimedean Polish group is the automorphism group of an ultrahomogeneous countable structure has indeed led to fruitful interactions between group theory and model theory. In the framework of metric model theory, introduced by Ben Yaacov, Henson and Usvyastov, this correspondence has been extended to all Polish groups by Melleray. In this thesis, we study various facets of this correspondence. The relationship between a structure and its automorphism group is particularly close in the setting of ℵ0-categorical structures. Indeed, the Ahlbrandt-Ziegler reconstruction theorem allows one to recover an ℵ0-categorical structure, up to bi-interpretability, from its automorphism group. In a joint work with Itai Ben Yaacov, we generalize this result to separably categorical metric structures. Besides, ultrahomogeneous countable structures have the advantage of being completely determined by their finitely generated substructures. In particular, this enabled Moore to give a combinatorial characterization of amenability for nonarchimedean Polish groups. We extend this characterization to all Polish groups and we deduce that amenability is a Gδ condition. Still in a reconstruction perspective, we are interested in the automatic continuity property for Polish groups. Sabok and Malicki introduced conditions of a combinatorial nature on an ultrahomogeneous metric structure that imply the automatic continuity property for its automorphism group. We show that these conditions carry to countable powers, which leads to the groups Aut(μ)N, U(l2)N and Iso(U)N satisfying the automatic continuity property. Those conditions are a weakening of the property of having ample generics. In a joint work with Francois Le Maitre, we exhibit the first examples of connected groups with ample generics, which answers a question of Kechris and Rosendal. Finally, in a joint work with Isabel Muller and Aristotelis Panagiotopoulos, we study the relative homogeneity of substructures in an ultrahomogeneous countable structure. We characterize it completely by a property of the types over the substructures: being determined by a finite set
5

Théorie ergodique des actions de groupes et algèbres de von Neumann / Groups, Actions and von Neumann algebras

Carderi, Alessandro 23 June 2015 (has links)
Dans cette thèse, on s'intéresse à la théorie mesurée des groupes, à l'entropie sofique et aux algèbres d'opérateurs ; plus précisément, on étudie les actions des groupes sur des espaces de probabilités, des propriétés fondamentales de leur entropie sofique (pour des groupes discrets), leurs groupes pleins (pour des groupes Polonais), et les algèbres de von Neumann et leurs sous-algèbres moyennables (pour des groupes à caractère hyperbolique et des réseaux de groupes de Lie). Cette thèse est constituée de trois parties.Dans une première partie j'étudie l'entropie sofique des actions profinies. L'entropie sofique est un invariant des actions mesurées des groupes sofiques défini par L. Bowen qui généralise la notion d'entropie introduite par Kolmogorov. La définition d'entropie sofique nécessite de fixer une approximation sofique du groupe. Nous montrons que l'entropie sofique des actions profinies est effectivement dépendante de l'approximation sofique choisie dans le cas des groupes libres et certains réseaux de groupes de Lie.La deuxième partie est un travail en collaboration avec François Le Maître. Elle est constituée d'un article prépublié dans lequel nous généralisons la notion de groupe plein aux actions préservant une mesure de probabilité des groupes polonais, et en particulier, des groupes localement compacts. On définit une topologie polonaise sur ces groupes pleins et on étudie leurs propriétés topologiques fondamentales, notamment leur rang topologique et la densité des éléments apériodiques.La troisième partie est un travail en collaboration avec Rémi Boutonnet. Elle est constituée de deux articles prépubliés dans lesquels nous considérons la question de la maximalité de la sous-algèbre de von Neumann d'un sous-groupe moyennable maximal, dans celle du groupe ambiant. Nous résolvons la question dans le cas des groupes à caractère hyperbolique en utilisant les techniques de Sorin Popa. Puis, nous introduisons un critère dynamique à la Furstenberg, permettant de résoudre la question pour des sous-groupes moyennables de réseaux des groupes de Lie en rang supérieur. / This dissertation is about measured group theory, sofic entropy and operator algebras. More precisely, we will study actions of groups on probability spaces, some fundamental properties of their sofic entropy (for countable groups), their full groups (for Polish groups) and the amenable subalgebras of von Neumann algebras associated with hyperbolic groups and lattices of Lie groups. This dissertation is composed of three parts.The first part is devoted to the study of sofic entropy of profinite actions. Sofic entropy is an invariant for actions of sofic groups defined by L. Bowen that generalize Kolmogorov's entropy. The definition of sofic entropy makes use of a fixed sofic approximation of the group. We will show that the sofic entropy of profinite actions does depend on the chosen sofic approximation for free groups and some lattices of Lie groups. The second part is based on a joint work with François Le Maître. The content of this part is based on a prepublication in which we generalize the notion of full group to probability measure preserving actions of Polish groups, and in particular, of locally compact groups. We define a Polish topology on these full groups and we study their basic topological properties, such as the topological rank and the density of aperiodic elements. The third part is based on a joint work with Rémi Boutonnet. The content of this part is based on two prepublications in which we try to understand when the von Neumann algebra of a maximal amenable subgroup of a countable group is itself maximal amenable. We solve the question for hyperbolic and relatively hyperbolic groups using techniques due to Popa. With different techniques, we will then present a dynamical criterion which allow us to answer the question for some amenable subgroups of lattices of Lie groups of higher rank.

Page generated in 0.0609 seconds