• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 2
  • Tagged with
  • 20
  • 20
  • 8
  • 7
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude et programmation de problèmes relatifs à la présentation d'un groupe

Betour-Zoghbi, Ishac 30 June 1971 (has links) (PDF)
.
2

Un invariant clé dans l'évolution de la théorie des noeuds

Soucy, Martin January 2005 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
3

Dynamique sur les espaces de représentations de surfaces non-orientables

Palesi, Frédéric 07 December 2009 (has links) (PDF)
Nous considérons l'espace de représentations Hom(Pi,G) d'un groupe de surface Pi dans un groupe de Lie G, et l'espace de modules X(Pi,G) des classes de conjugaison de ces représentations. Le groupe modulaire de la surface sous-jacente agit naturellement sur ces espaces, et cette action possède une dynamique très riche qui dépend du choix du groupe de Lie G, et de la composante connexe de l'espace sur laquelle on se place. Dans cette thèse, nous étudions le cas où S est une surface non-orientable. Dans la première partie, nous étudions les propriétés dynamiques de l'action du groupe modulaire sur l'espace de modules X(Pi, SU(2)) et prouvons que cette action est ergodique lorsque la caractéristique d'Euler de la surface est inférieure à -2. Dans la deuxième partie, nous montrons que l'espace des représentations Hom(Pi, PSL(2,R)) possède deux composantes connexes indexées par une classe de Stiefel-Whitney.
4

La catégorie Fquad des foncteurs de Mackey généralisés pour les formes quadratiques sur F_2

Vespa, Christine 12 December 2005 (has links) (PDF)
Le but de ce travail est de construire et d'étudier des catégories de foncteurs associées aux espaces vectoriels munis de formes quadratiques non dégénérées sur F_2. Après avoir construit la catégorie de foncteurs Fquad, en utilisant des techniques similaires à celles utilisées pour les foncteurs de Mackey, on obtient plusieurs résultats concernant les objets simples de cette catégorie. <br /><br />On montre l'existence d'un foncteur, noté i, de F dans Fquad exact, fidèle et préservant les simples, où F est la catégorie des foncteurs entre la catégorie des espaces vectoriels finis sur F_2 et la catégorie de tous les espaces vectoriels.<br /><br />On introduit une autre catégorie de foncteurs, notée Fiso, dont les objets simples sont indexés par les représentations modulaires irréductibles des groupes orthogonaux, éventuellement dégénérés, sur F_2 et on montre l'existence d'un foncteur, noté k, de Fiso dans Fquad exact, fidèle et préservant les simples.<br /><br />En décomposant les deux générateurs projectifs les plus simples de la catégorie Fquad on obtient une classification des ``petits'' objets simples de Fquad qui nous permet de montrer que les foncteurs polynomiaux de Fquad sont dans l'image du foncteur i. De nouveaux foncteurs de Fquad, baptisés foncteurs mixtes, apparaissent dans la décomposition de ces deux générateurs projectifs et fournissent deux familles infinies de foncteurs simples de Fquad ne provenant ni de F, ni de Fiso.
5

Systèmes de Hopf-Galois : exemples et applications aux représentations des groupes quantiques

Bichon, Julien 10 September 2004 (has links) (PDF)
Ce document de synthèse résume les travaux de l'auteur sur les extensions et systèmes de Hopf-Galois et leurs applications en théorie des représentations des groupes quantiques, ainsi que sur les constructions d'exemples de groupes quantiques.
6

Phénomènes de résonance et renormalisation en espace-temps courbe

Décanini, Yves 24 June 2008 (has links) (PDF)
Ce mémoire est une présentation de nos travaux de recherches s'étendant sur les dix dernières années. Ils ne sont pas consacrés à un domaine particulier de la physique, mais se répartissent suivant trois grands thèmes : aspects algébriques de la diffusion des ondes, utilisation des méthodes semiclassiques en diffusion et renormalisation en théorie des champs en espacetemps courbe.
7

Propriétés et combinatoire des bases de type canonique

Baumann, Pierre 18 June 2012 (has links) (PDF)
L'étude des représentations d'un groupe algébrique complexe semi-simple connexe G est généralement menée en choisissant un sous-groupe de Borel B de G et un tore maximal T inclus dans B. Étant donnée une représentation de G sur un espace vectoriel V, il est dès lors naturel de vouloir étudier les bases de V compatibles avec ce choix de (B,T). Différents travaux de Zelevinsky, Berenstein, Lusztig et Kashiwara ont conduit aux notions de " base canonique ", de " bonne base ", de " base parfaite ", de " base en cordes ", ... , et à la construction de telles bases. Le but de ce mémoire est de présenter succintement cette théorie, d'exposer quelques propriétés remarquables de ces bases et de la combinatoire qu'elles définissent, et de proposer quelques perspectives.
8

Rigidité et non-rigidité d'actions de groupes sur les espaces Lp non-commutatifs / Rigidity and non-rigidity of group actions on non-commutative Lp spaces

Olivier, Baptiste 21 May 2013 (has links)
Nous étudions des propriétés de rigidité et des propriétés de non-rigidité forte d'actions de groupes sur des espaces Lp non-commutatifs. Récemment, des variantes de la propriété (T) de Kazhdan et de la propriété de point fixe (FH) ont été introduites, appelées respectivement propriété (TB) et propriété (FB), et énoncées en termes de représentations orthogonales sur un espace de Banach B. Nous nous intéressons au cas où B est un espace Lp non-commutatif Lp(M), associé à une algèbre de von Neumann M. Dans un premier temps, nous montrons qu'un groupe possédant la propriété (T) possède la propriété (TLp(M)) pour toute algèbre de von Neumann M. On en déduit que les groupes de rang supérieur ont la propriété (FLp(M)). Nous montrons que pour certaines algèbres, comme par exemple M=B(H), les propriétés (T) et (TLp(M) sont équivalentes. A l'opposé, nous caractérisons les groupes possédant la propriété (Tlp), et montrons que cette classe de groupes est strictement plus grande que celle avec la propriété (T). Dans un second temps, nous introduisons des variantes de la propriété (H) de Haagerup, les propriétés (HLp(M)) et l' a-FLp(M)-menabilité, définies en termes d'actions sur l'espace Lp(M). Nous décrivons les liens entre la propriété (H) et sa variante (HLp(M)) suivant l'algèbre M considérée. Nous montrons que les groupes possédant (H) sont a-FLp(M)-menables pour certaines algèbres M, comme par exemple le facteur II infini hyperfini. / We studied rigidity properties and strong non-rigidity properties for group actions on non-commutative Lp spaces. Recently, variants of Kazhdan's property (T) and fixed-point property (FH) were introduced, respectively called property (TB) and property (FB), and described in terms of orthogonal representations on a Banach space B. We are interested in the case where B is a non-commutative Lp space Lp(M), associated to a von Neumann algebra M. In a first part, we show that if a group has property (T), then it has property (TLp(M)) for any von Neumann algebra M. We deduce that higher rank groups have property (FLp(M)). We show that for some algebras, such as M=B(H), properties (T) and (TLp(M)) are equivalent. By contrast, we characterize groups with property (Tlp), and show that this class of groups is larger than the one with property (T). In a second part, we introduce variants of the Haagerup property (H), namely properties (HLp(M)) and a-FLp(M)-menability, defined in terms of actions on the space Lp(M). We describe relationships between property (H) and its variant (HLp(M)) for different algebras M. We show that groups with property (H) are a-FLp(M)-menable for some algebras M, such as the hyperfinite II infinite factor.
9

Sur la conjecture de Kobayashi et l'hyperbolicité des hypersurfaces projectives en dimension 2 et 3

Rousseau, Erwan 13 December 2004 (has links) (PDF)
En 1970, S. Kobayashi a posé le problème de savoir si les hypersurfaces génériques de grand degré de l'espace projectif complexe et leurs complémentaires étaient hyperboliques. Dans la première partie de cette thèse nous montrons l'hyperbolicité des complémentaires de courbes génériques à deux composantes de degrés suffisamment grands dans le plan. Dans une seconde partie, nous faisons l'étude des jets de Demailly en dimension 3 et nous obtenons leur caractérisation algébrique. En utilisant la théorie de la représentation des groupes linéaires, ceci nous permet de donner la structure du gradué du fibré des jets d'ordre 3 en dimension 3, étape importante pour obtenir des théorèmes d'hyperbolicité. Nous justifions la nécessité de travailler avec des jets de différentielles d'ordre 3 par l'absence de jets de différentielles d'ordre 2 sur les hypersurfaces lisses de l'espace projectif complexe de dimension 4.
10

Régularité et description des spectres pour les représentations de groupes topologiques

Cianfarani, Mathieu 29 November 2012 (has links) (PDF)
Dans ce travail, on commence par donner des critères de continuité automatique pour des représentations de groupes topologiques dans des algèbres de Banach. Deux approches différentes sont présentées : l'une utilisant la décomposition de Glicksberg-De Leeuw s'applique aux groupes localement compacts, l'autre, basée sur un résultat d'équicontinuité de suites de fonctions de type positif, aux groupes polonais (non forcément localement compacts). Typiquement, on exprime la continuité d'une représentation par celle de ses composées par des formes linéaires continues sur l'algèbre de représentation. On déduit de ce qui précède des résultats de continuité automatique de morphismes de groupes topologiques. Dans une seconde partie, on applique les résultats de la première pour obtenir des propriétés d'étalement du spectre des éléments de l'image de la représentation en dehors d'un sous-ensemble " petit " en divers sens du groupe dans le cas abélien. La troisième partie généralise partiellement les résultats de la seconde au cas des groupes de Lie (non abéliens en précisant ainsi, dans ce cas, un théorème obtenu par J.M. Paoli et J.C. Tomasi. Mots clefs : Groupes localement compacts, groupes polonais, groupes de Lie, Algèbres de Banach, représentations de groupes, continuité automatique, spectre d'opérateurs.

Page generated in 0.16 seconds