• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 39
  • 14
  • 10
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 214
  • 214
  • 61
  • 51
  • 47
  • 41
  • 39
  • 28
  • 27
  • 27
  • 25
  • 24
  • 24
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Pesticides and pesticide combinations on brain neurochemistry

Aguilar, Carolina 31 August 2004 (has links)
Pesticides have been suggested to play a role in the development of many neurodegerative diseases including Parkinson's disease and Alzheimer's disease. Additionally, it has been suggested that exposure to pesticides and other environmental chemicals during the early stages of life could result in an increased vulnerability to such substances that could lead to neurotoxicity and degeneration late in life. We hypothesized that exposure to mixtures of certain pesticides could change neurotransmitter levels and cellular oxidative stress and that this would be greater in mice exposed early and later in life than mice exposed only as adults. We studied the effects of permethrin (PR) (a pyrethroid type I) and endosulfan (EN) (an organochlorine) on the levels of catecholamines, indolamines, acetylcholinesterase, lipid peroxidation and α-synuclein in the brain of mice. These pesticides have different structures but both are known to modify the kinetics of voltage-sensitive ion channels and calcium ion flux/homeostasis that could affect the release of several neurotransmitters. The study consisted of two experiments: In the first experiment, adult C57Bl/6 mice (7-9 months old) were injected, intraperitoneally, with the following treatments: EN 4.3, 2.15 mg/kg; PR 150, 15 mg/kg and their mixtures EN 4.3 + PR 150 and EN 2.15 + PR 15 mg/kg. Mice were sacrificed 24 hrs after the last injection. In the second experiment, doses consisted of EN 0.7, 1.4 mg/kg, PR 1.5, 15 mg/kg and their mixtures EN 0.7 + PR 1.5 mg/kg and EN 1.4 + PR 15 mg/kg were given to juvenile mice intraperitoneally daily during a period of two weeks from postnatal day 5 to 19. Mice were then, left undisturbed with their dams. Re-challenge was performed when mice were 7-9 months old and dosages of EN 4.3, 2.15 mg/kg, PR 150, 15 mg/kg and their mixtures, EN 4.3 + PR 150 and EN 2.15 + PR 15 mg/kg were given intraperitoneally every other day during a period of two weeks to match the treatments when pesticide exposure was only as adults. Mice were sacrificed 24 hrs after the last injection. The corpora striatum was extracted and analyzed by HPLC for catecholamines (dopamine, DOPAC, homovalinic acid and norepinephrine) and indolamines (serotonin and 5-HIAA). In general low doses of permethrin and endosulfan alone and in combination (EN 2.15 + PR 15 mg/kg) altered the levels of catecholamines and indolamines in both studies with adult mice and mice dosed as juveniles and re-challenged as adults. Catecholamine and indolamines levels were affected to a greater extent in the adult mice than in mice dosed as juveniles and re-challenged as adults, when compared to controls. Acetylcholinesterase was increased under both exposure situations but again adult mice seemed to be more affected than mice dosed as juveniles and re-challenged as adults. Because reactive oxygen species have been implicated in the development of Parkinson's disease, and are known to cause degradation of certain neurotransmitters, we monitored the levels of lipid peroxides in brain cortex as an indicator of free radical tissue damage. The peroxide levels were measured by thiobarbituric acid reactive products (TBARS). Increased levels of lipid peroxides were significant in the low dose treatment groups of the adult study. However, there seemed to be a pattern between the levels of dopamine and DOPAC in the striatum and the levels of peroxidation in cortex. The presence of dopamine metabolites appeared to be related to high levels of peroxidation within the basal ganglia and up-regulation of proteins such as α-synuclein. Western blots of α-synuclein in both experiments of the study showed intense double and triple bands that corresponded to aggregated α-synuclein. In general, when compared with controls, mice dosed as juveniles and re-challenged as adults did not alter the above parameters as much as mice dosed only as adults. Instead, the mice first dosed as juveniles seemed to develop an adaptation response to the later exposure of these pesticides. Taking all these results into account, early exposure and re-challenge with permethrin and endosulfan in this study appeared to induce a protective response against neurochemical changes in the brain of these mice. In addition, low doses of these pesticides and the low dose combination mixture seem to exert an effect on the parameters studied. Therefore, exposure to pesticides such as endosulfan and permethrin and their combinations could make a contribution towards the initiation or aggravation of biochemical neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. / Master of Science
112

Striatum mosaic disassembling: shedding light on striatal neuronal type functions by selective ablation in genetic models / Etude du rôle de populations neuronales du striatum par ablation sélective dans des modèles murins transgéniques

Durieux, Pierre 25 May 2010 (has links)
The striatum represents the main input nucleus of the basal ganglia, a system of subcortical nuclei critically involved into motor control and motivational processes and altered in several conditions such as Parkinson’s diseases or drug addiction. The projection neurons of the striatum are GABAergic (γ-aminobutyric acid) medium-sized spiny neurons (MSNs), and account for the large majority of striatal neurons, while interneurons represent about 10% of striatal cells. The MSNs are subdivided into two subpopulations that form two main efferent pathways: the striatonigral and striatopallidal neurons. The striatonigral MSNs project to the entopeduncular nucleus (EP) and substancia nigra pars reticulata (SNr) (direct pathway) and co-express dopamine D1 receptors (D1R) and substance P neuropeptide (SP). On the other hand, striatopallidal MSNs project to the lateral globus pallidus (LGP) (indirect pathway) and co-express dopamine D2 receptor (D2R), adenosine A2A receptor (A2AR) and enkephalin (Enk). The D1R striatonigral and D2R striatopallidal MSNs are equal in number and shape and are mosaically distributed through all the striatum. The dorsal striatum is mainly involved in motor control and learning while the ventral striatum is crucial for motivational processes. In view of the still debating respective functions of projection D2R-striatopallidal and D1R-striatonigral neurons and striatal interneurons, both in motor control and learning of skills and habits but also in more cognitive processes such as motivation, we were interested in the development of models allowing the removal of selective striatum neuronal populations in adult animal brain. Because of the mosaical organisation of the striatum, a targeting of specific neuronal type, with techniques such as chemical lesions or surgery, is still impossible. Taking advantage of new transgenic approaches, the goal of the present work was to generate and/or to initiate the characterization of genetic models in which a selective subtype of striatal neuron can be ablated in an inducible way. We used a transgenic approach in which mice express a monkey diphtheria toxin (DT) receptor (DTR) in D2R-striatopallidal or D1R-striatonigral neurons. Local stereotactic injections of DT can then induce selective neuronal ablation in functionally different striatal areas.<p>We first investigated functions of D2R-striatopallidal neurons in motor control and drug reinforcement by their selective ablation in the entire striatum or restricted to the ventral striatum. This DTR strategy produced selective D2R striatopallidal MSN ablation with integrity of the other striatal neurons as well as the striatal dopaminergic function. D2R MSN ablation in the entire striatum induced permanent hyperlocomotion while ventral striatum-restricted ablation increased amphetamine place preference.<p>We next compared respective roles of D2R-striatopallidal and D1R-striatonigral neurons in motor control and skill learning in functionally different striatum subregions.<p>Finally, to target nitrergic interneurons of the striatum, we developed a bacterial artificial chromosome genetic strain in which the cre-recombinase expression is under the control of the neuronal nitric oxide gene promoter.<p><p>Altogether, those results show that DTR expression and DT local injections is an efficient and flexible strategy to ablate selective striatum neuronal types with spatial resolution. We provide the first direct experimental evidences that D2R striatopallidal neurons inhibit both locomotor and drug-reinforcement processes and that D2R and D1R MSNs in different striatum subregions have distinct functions in motor control and motor skill learning. Those results strongly support a cell-type and topographic functional organization of the striatum and underscore the need for characterization of the specific cellular and molecular modifications that are induced in D2R and D1R MSNs during drug-reinforcement or procedural learning.<p> / Doctorat en Sciences médicales / info:eu-repo/semantics/nonPublished
113

Mathematical Models of Basal Ganglia Dynamics

Dovzhenok, Andrey A. 12 July 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Physical and biological phenomena that involve oscillations on multiple time scales attract attention of mathematicians because resulting equations include a small parameter that allows for decomposing a three- or higher-dimensional dynamical system into fast/slow subsystems of lower dimensionality and analyzing them independently using geometric singular perturbation theory and other techniques. However, in most life sciences applications observed dynamics is extremely complex, no small parameter exists and this approach fails. Nevertheless, it is still desirable to gain insight into behavior of these mathematical models using the only viable alternative – ad hoc computational analysis. Current dissertation is devoted to this latter approach. Neural networks in the region of the brain called basal ganglia (BG) are capable of producing rich activity patterns. For example, burst firing, i.e. a train of action potentials followed by a period of quiescence in neurons of the subthalamic nucleus (STN) in BG was shown to be related to involuntary shaking of limbs in Parkinson’s disease called tremor. The origin of tremor remains unknown; however, a few hypotheses of tremor-generation were proposed recently. The first project of this dissertation examines the BG-thalamo-cortical loop hypothesis for tremor generation by building physiologically-relevant mathematical model of tremor-related circuits with negative delayed feedback. The dynamics of the model is explored under variation of connection strength and delay parameters in the feedback loop using computational methods and data analysis techniques. The model is shown to qualitatively reproduce the transition from irregular physiological activity to pathological synchronous dynamics with varying parameters that are affected in Parkinson’s disease. Thus, the proposed model provides an explanation for the basal ganglia-thalamo-cortical loop mechanism of tremor generation. Besides tremor-related bursting activity BG structures in Parkinson’s disease also show increased synchronized activity in the beta-band (10-30Hz) that ultimately causes other parkinsonian symptoms like slowness of movement, rigidity etc. Suppression of excessively synchronous beta-band oscillatory activity is believed to suppress hypokinetic motor symptoms in Parkinson’s disease. Recently, a lot of interest has been devoted to desynchronizing delayed feedback deep brain stimulation (DBS). This type of synchrony control was shown to destabilize synchronized state in networks of simple model oscillators as well as in networks of coupled model neurons. However, the dynamics of the neural activity in Parkinson’s disease exhibits complex intermittent synchronous patterns, far from the idealized synchronized dynamics used to study the delayed feedback stimulation. The second project of this dissertation explores the action of delayed feedback stimulation on partially synchronous oscillatory dynamics, similar to what one observes experimentally in parkinsonian patients. We employ a computational model of the basal ganglia networks which reproduces the fine temporal structure of the synchronous dynamics observed experimentally. Modeling results suggest that delayed feedback DBS in Parkinson’s disease may boost rather than suppresses synchronization and is therefore unlikely to be clinically successful. Single neuron dynamics may also have important physiological meaning. For instance, bistability – coexistence of two stable solutions observed experimentally in many neurons is thought to be involved in some short-term memory tasks. Bistability that occurs at the depolarization block, i.e. a silent depolarized state a neuron enters with excessive excitatory input was proposed to play a role in improving robustness of oscillations in pacemaker-type neurons. The third project of this dissertation studies what parameters control bistability at the depolarization block in the three-dimensional conductance-based neuronal model by comparing the reduced dopaminergic neuron model to the Hodgkin-Huxley model of the squid giant axon. Bifurcation analysis and parameter variations revealed that bistability is mainly characterized by the inactivation of the Na+ current, while the activation characteristics of the Na+ and the delayed rectifier K+ currents do not account for the difference in bistability in the two models.
114

Functional characterisation of synuclein-based novel genetic mouse models

Anwar, Sabina Zareen January 2011 (has links)
Synucleins are highly conserved presynaptic proteins with unknown function. &alpha;-synuclein plays a key role regulating dopamine homeostasis and is intimately involved in Parkinson’s disease (PD) pathogenesis. However, the normal/pathological role of &alpha;-synuclein remains unidentified. Studies exploring its function are limited as current transgenic mouse models do not fully recapitulate PD pathology. This thesis reports the functional characterisation of two novel synuclein-based mouse models. I report the molecular and functional characterisation of transgenic mouse lines with wild-type or A30P-mutant human &alpha;-synuclein genomic locus carried within a bacterial artificial chromosome. SNCA-A30P<sup>&plus;</sup>Snca-/- mice exhibited a highly physiologically relevant expression pattern of the transgene, including expression in the substantia nigra pars compacta (SNpc) and a specific, age-related loss of TH<sup>&plus;</sup> cells in the SNpc, the key region of preferential cell loss in PD, compared with non-transgenic Snca -/- littermate controls. Analysis of dopamine signalling using fast-scan cyclic voltammetry (FCV) showed young adult SNCA-A30P<sup>&plus;</sup>Snca-/- mice had an approximately 20&percnt; lower evoked extracellular dopamine concentration ([DA]o) compared with non-transgenic Snca -/- littermate controls, a decrease specific to the dorsal striatum. This difference diminished with age and could not be attributed to changes in dopamine reuptake/content. I detail the behavioural and neurochemical phenotype in mice lacking all three synucleins (&alpha;/&beta;/&gamma;). Functional compensation between synucleins emphasises the importance of studying their effects by removing all three proteins simultaneously. Triple-null mice exhibited hyperactivity in a novel environment reminiscent of a hyperdopaminergic-like phenotype, but showed no phenotype in anxiety or motor related tests. FCV revealed synuclein triple-null mice had a two-fold increase in [DA]o, specific to the dorsal striatum and not attributable to changes in dopamine reuptake/content, changes in striatal nicotinic receptor activity nor calcium-dependent changes in dopamine exocytosis. Together, the analysis from these two novel mouse models reveal synucleins play an important role in altering synaptic function in the dorsal striatum (the region selectively affected in PD) and contributes to growing evidence suggesting synucleins are negative regulators of synaptic dopamine release.
115

Rôle du système cholinergique striatal dans la physiopathologie des dystonies : un modèle expérimental chez le primate non-humain / Role of striatal cholinergic system in pathophysiology of dystonia : an experimental model in non-human primate

Ribot, Bastien 20 September 2018 (has links)
Introduction : La dystonie est définie comme un syndrome de cocontractions musculaires soutenues aboutissant à des mouvements répétitifs et des postures anormales. Cependant la physiopathologie des dystonies reste mal comprise. Les études menées chez l’homme soulignent le rôle crucial des ganglions de la base dans la physiopathologie des dystonies. Des données récentes obtenues chez le rongeur suggèrent l’implication d’un désordre de la transmission cholinergique striatale mais es modèles qu’ils soient génétiques ou pharmacologiques n’aboutissent pas toujours à un phénotype de dystonie. C’est pourquoi il était important de proposer une étude chez le primate non humain, visant à vérifier notre hypothèse de travail, à savoir : est-ce qu’une augmentation de la transmission cholinergique dans le putamen est capable d’induire un phénotype clinique de dystonie similaire à celui rencontré chez l’homme.Méthodes : Nous avons réalisé des infusions chroniques d’un agoniste muscarinique non sélectif (Oxotremorine) au sein du territoire sensori-moteur du striatum chez le primate non-humain. Les symptômes cliniques induits par ce produit ont été évalués à l’aide de l’échelle de Burke-Fahn-Marsden (BFM) adaptée à l’animal. Nous avons également utilisé une approche électromyographique pour caractériser l’activité musculaire en lien avec la clinique ainsi que des enregistrements de l’activité Multi-Unitaire et Unitaire au sein des ganglions de la base afin d’établir des corrélations électro-cliniques.Résultats : Les infusions d’Oxotremorine nous ont permis d’observer : (i) des postures et des mouvements anormaux similaires aux mouvements dystoniques rencontrés en pathologie humaine ; (ii) une fréquence de décharge neuronale anormalement basse dans le GPi (13,5Hz) et un pattern de décharge de type « bursty » principalement lorsque les symptômes sont sévères ; (iii) une activité oscillatoire (28-30Hz) au sein du putamen, du GPe et du GPi; (iv) l’absence de cohérence de l’activité oscillatoire entre ces structures ; (v) que le GPi est la seule structure à présenter une cohérence de l’activité oscillatoire.Conclusion : Nos travaux démontrent pour la première fois qu’un modèle de dystonie chronique peut être obtenu chez le primate non humain par augmentation du tonus cholinergique dans le putamen. Ce travail valide l’hypothèse de l’implication des interneurones cholinergiques dans la physiopathologie des dystonies. Ils confortent l’idée qu’une augmentation du tonus cholinergique peu à elle seule induire un phénotype de dystonie. / Introduction: Dystonia is defined as a syndrome of sustained muscular cocontractions leading to repetitive movements and abnormal postures. However, the pathophysiology of dystonia remains poorly understood. Studies in humans emphasize the crucial role of basal ganglia in the pathophysiology of dystonia. Recent data in rodents suggest the involvement of a disorder in the striatal cholinergic transmission. But these genetic or pharmacological rodent models do not always express the phenotype of dystonia. Therefore, it was important to propose a primate study to test whether an increase of cholinergic transmission within the putamen is able to induce a clinical phenotype of dystonia similar to that seen in humans.Methods: To verify our hypothesis, we chronically infused non-selective muscarinic agonist (Oxotremorine) in the sensory-motor striatum in non-human primates. Dystonic clinical symptoms induced by this drug were assessed using the Burke-Fahn-Marsden (BFM) scale adapted to animals. We used electromyographic approach to characterize muscular activity linked to clinical symptoms, and we recorded Multi-Unit and Single-Unit neuronal activity in basal ganglia to establish electro-clinical correlations.Results: The infusions of Oxotremorine allowed us to observe: (i) abnormal postures and movements similar to the dystonic movements encountered in human pathology; (ii) an abnormally low neuronal firing frequency in the GPi (13.5Hz) and a bursty firing pattern mainly when the symptoms where severe; (iii) oscillatory activity (28-30Hz) within the putamen, GPe and GPi; (iv) the lack of coherence of the oscillatory activity between these structures; (v) that the GPi is the only structure to present a coherence of the oscillatory activity.Conclusion: We have demonstrated for the first time that a model of chronic dystonia can be obtained in non-human primates by increasing cholinergic tone in the putamen. This work validates the hypothesis of an involvement of cholinergic interneurons and striatal acetylcholine levels in the pathophysiology of dystonia.
116

A Unified Model of Rule-Set Learning and Selection

Pierson J. Fleischer (5929673) 16 January 2019 (has links)
A new, biologically plausible model of task-set learning that reproduces effects from both rule-learning experiments and task-switching experiments.<br>
117

Dopaminergic modulation of bidirectional endocannabinoid plastictity at corticostriatal synapse / Modulation dopaminergique de la plasticité bidirectionnelle endocannabinoïde des synapses cortico-striatales

Xu, Hao 15 September 2015 (has links)
Les ganglions de la base sont impliqués dans le contrôle adaptatif du comportement et l’apprentissage procédural. Il est bien établit que la plasticité synaptique cortico-striatale constitue le principal substrat de la mémoire procédurale, affectée lors de la maladie de Parkinson (MP). La plasticité cortico-striatale est modulée par différents neurotransmetteurs, tels que les endocannabinoïdes (eCB) ou la dopamine (DA). Il est donc crucial de caractériser l’implication des interactions eCB-DA dans la plasticité cortico-striatale en conditions physiologique mais aussi pathophysiologique. Nous avons étudié la « spike-timing dependent plasticity » (STDP), une règle synaptique d’apprentissage hebbien. Nous avons mis en évidence, grâce au patch-clamp sur tranches de cerveaux de rongeurs, une STDP potentiation (tLTP) médiée par les eCBs et la DA. Nous avons montré que :(1) Un faible nombre de potentiels d’action est suffisant pour induire une eCB-tLTP par l’activation du CB1R. (2) La eCB-tLTP est exprimée au niveau des neurones striataus de type D1 et D2. (3) La DA, via les D2R exprimé par les afférences présynaptiques, est nécessaire pour la eCB-tLTP. (4) La eCB-tLTP est altérée dans un modèle rongeur de la MP, et est restaurée par la L-DOPA. (5) L’exposition à un milieu enrichi de rongeurs « parkinsoniens » restaure la eCB-tLTP. En conclusion, ces résultats mettent en évidence l’existence d’une plasticité eCB bidirectionnelle modulée par la DA. Cela étend considérablement le spectre d’action des eCBs et en particulier leur implication dans l’engramme de l’apprentissage rapide. / The basal ganglia (BG) are involved in the adaptive control of behavior and procedural learning. The striatum, the primary input nucleus of BG, integrates cortical and dopaminergic inputs constituing a major site of synaptic plasticity. Plasticity at corticostriatal synapses is a key substrate for procedural learning and is affected in Parkinson’s disease (PD). The corticostriatal transmission are modulated by the endocannabinoid (eCB) and dopaminergic (DA) systems. Thus it is pivotal to characterize their interactions in the striatal plasticity in physiological and pathophysiological conditions. Using electrophysiological recordings in rodent brain slices, we unraveled a homosynaptic spike-timing-dependent potentiation mediated by eCBs and DA. We show that at the single-cell level: (1) Few spikes are sufficient to induce eCB-tLTP through CB1R. (2) eCB-tLTP occurs in DA type 1 receptor (D1R)- and DA type 2 receptor (D2R)-expressing cells. (3) DA, through presynaptic D2R, is required for eCB-tLTP induction. (4) eCB-tLTP is impaired in a model of PD and is restored by L-DOPA treatment. (5) Enriched environment rescues eCB-tLTP in DA-deprived rats. In summary, this thesis confirms and further extends a new form of interplay between eCB and DA systems involved in physiological and pathophysiological plasticity processes.
118

Traitement des informations thalamiques au travers des ganglions de la base : approche électrophysiologique et optogénétique in vivo / Treatment of thalamic information through the basal ganglia : combining electrophysiology and optogenetics in vivo

Hanini-Daoud, Maroua 16 December 2016 (has links)
Le centre médian/parafasciculaire (CM/Pf) du thalamus a récemment émergé comme un élément d'intérêt dans le contexte de la maladie de Parkinson. Ainsi le fonctionnement normal et pathologique des GB ne peut pas être pleinement élucidé sans qu'il ne soit pris en considération. Dans ce contexte, nous avons analysé le transfert des informations thalamiques dans les GB en enregistrant, in vivo, les réponses évoquées au niveau de la structure de sortie des GB, la substantce noire pars reticulata (SNr) soit par la stimulation électrique ou optogénétique du CM/Pf. Ensuite, nous avons étudié les composantes des GB impliquées dans ces réponses en analysant les réponses évoquées par l'activation optogenetique spécifique des voies thalamo-striée, thalamo-subthalamique ou thalamo-nigrale. À la fois l'activation électrique et optogenetique du CM/Pf évoquent des réponses complexes dans la SNr qui sont composées d'une inhibition qui peut être précédée et/ou suivie d'excitations. L'inhibition et l'excitation tardive dépendent de l'activation des voies trans-striatales, alors que les premières excitations mettent en jeu les voies thalamo-subthalamique et thalamo-nigrale. Nous avons également étudié l'impact des interneurones cholinergiques du striatum ainsi que les afférences dopaminergiques sur le transfert des informations thalamiques dans les GB. Pour ce faire, nous avons enregistré les réponses évoquées au niveau des neurones de projection du striatum suite à la stimulation électrique du CM/Pf avec ou sans l'inhibition optogénétique des CINs. Nous serons alors en mesure de déterminer comment les CINs sont impliqués dans le transfert des informations thalamiques au sein des GB. / The centre median/parafascicular (CM/Pf) of the thalamus has recently emerged as a component of interest in the context of Parkinson’s disease. Thus normal and pathological dynamics of BG cannot be fully understood unless it is taken into account. Here, we analyzed the transfer of CM/Pf information through BG by recording, in vivo, the evoked responses of BG output neurons in the substantia nigra pars reticulata (SNr) to either electrical or optogenetic CM/Pf stimulations. Then, we investigated the BG components involved in these responses by analyzing the responses evoked by specific optogenetic activation of the thalamo-striatal, thalamo-subthalamic or thalamo-nigral pathways. Both electrical and optogenetic activation of CM/Pf evoke complex responses in SNr that are composed of an inhibition that can be preceded and/or followed by excitations. The inhibition and the late excitation rely on the activation of the trans-striatal pathways, whereas the early excitations involve thalamo-subthalamic and thalamo-nigral projections. We are currently analyzing whether and how the striatal cholinergic interneurons (CINs) and the dopaminergic afferent system modulate the transfer of thalamic information within the BG. For the second part of my project, we analyzed the treatment of thalamic information from CM/Pf at the level of the striatum. To do this, we recorded the evoked responses of striatal projection neurons by the electrical stimulation of the CM/Pf with or without the inhibition of the CINs by optogenetics. We will then be able to determine how CINs are involved in the transfer of thalamic information at the level of the striatum.
119

Striatum mosaic disassembling: shedding light on striatal neuronal type functions by selective ablation in genetic models/Etude du rôle de populations neuronales du striatum par ablation sélective dans des modèles murins transgéniques.

Durieux, Pierre PF 25 May 2010 (has links)
The striatum represents the main input nucleus of the basal ganglia, a system of subcortical nuclei critically involved into motor control and motivational processes and altered in several conditions such as Parkinson’s diseases or drug addiction. The projection neurons of the striatum are GABAergic (γ-aminobutyric acid) medium-sized spiny neurons (MSNs), and account for the large majority of striatal neurons, while interneurons represent about 10% of striatal cells. The MSNs are subdivided into two subpopulations that form two main efferent pathways: the striatonigral and striatopallidal neurons. The striatonigral MSNs project to the entopeduncular nucleus (EP) and substancia nigra pars reticulata (SNr) (direct pathway) and co-express dopamine D1 receptors (D1R) and substance P neuropeptide (SP). On the other hand, striatopallidal MSNs project to the lateral globus pallidus (LGP) (indirect pathway) and co-express dopamine D2 receptor (D2R), adenosine A2A receptor (A2AR) and enkephalin (Enk). The D1R striatonigral and D2R striatopallidal MSNs are equal in number and shape and are mosaically distributed through all the striatum. The dorsal striatum is mainly involved in motor control and learning while the ventral striatum is crucial for motivational processes. In view of the still debating respective functions of projection D2R-striatopallidal and D1R-striatonigral neurons and striatal interneurons, both in motor control and learning of skills and habits but also in more cognitive processes such as motivation, we were interested in the development of models allowing the removal of selective striatum neuronal populations in adult animal brain. Because of the mosaical organisation of the striatum, a targeting of specific neuronal type, with techniques such as chemical lesions or surgery, is still impossible. Taking advantage of new transgenic approaches, the goal of the present work was to generate and/or to initiate the characterization of genetic models in which a selective subtype of striatal neuron can be ablated in an inducible way. We used a transgenic approach in which mice express a monkey diphtheria toxin (DT) receptor (DTR) in D2R-striatopallidal or D1R-striatonigral neurons. Local stereotactic injections of DT can then induce selective neuronal ablation in functionally different striatal areas. We first investigated functions of D2R-striatopallidal neurons in motor control and drug reinforcement by their selective ablation in the entire striatum or restricted to the ventral striatum. This DTR strategy produced selective D2R striatopallidal MSN ablation with integrity of the other striatal neurons as well as the striatal dopaminergic function. D2R MSN ablation in the entire striatum induced permanent hyperlocomotion while ventral striatum-restricted ablation increased amphetamine place preference. We next compared respective roles of D2R-striatopallidal and D1R-striatonigral neurons in motor control and skill learning in functionally different striatum subregions. Finally, to target nitrergic interneurons of the striatum, we developed a bacterial artificial chromosome genetic strain in which the cre-recombinase expression is under the control of the neuronal nitric oxide gene promoter. Altogether, those results show that DTR expression and DT local injections is an efficient and flexible strategy to ablate selective striatum neuronal types with spatial resolution. We provide the first direct experimental evidences that D2R striatopallidal neurons inhibit both locomotor and drug-reinforcement processes and that D2R and D1R MSNs in different striatum subregions have distinct functions in motor control and motor skill learning. Those results strongly support a cell-type and topographic functional organization of the striatum and underscore the need for characterization of the specific cellular and molecular modifications that are induced in D2R and D1R MSNs during drug-reinforcement or procedural learning.
120

Mechanisms of Deep Brain Stimulation for the Treatment of Parkinson's Disease: Evidence from Experimental and Computational Studies

So, Rosa Qi Yue January 2012 (has links)
<p>Deep brain stimulation (DBS) is used to treat the motor symptoms of advanced Parkinson's disease (PD). Although this therapy has been widely applied, the mechanisms of action underlying its effectiveness remain unclear. The goal of this dissertation was to investigate the mechanisms underlying the effectiveness of subthalamic nucleus (STN) DBS by quantifying changes in neuronal activity in the basal ganglia during both effective and ineffective DBS.</p><p>Two different approaches were adopted in this study. The first approach was the unilateral 6-hydroxydopamine (6-OHDA) lesioned rat model. Using this animal model, we developed behavioral tests that were used to quantify the effectiveness of DBS with various frequencies and temporal patterns. These changes in behavior were correlated with changes in the activity of multiple single neurons recorded from the globus pallidus externa (GPe) and substantia nigra reticulata (SNr). The second approach was a computational model of the basal ganglia-thalamic network. The output of the model was quantified using an error index that measured the fidelity of transmission of information in model thalamic neurons. We quantified changes in error index as well as neural activity within the model GPe and globus pallidus interna (GPi, equivalent to the SNr in rats).</p><p>Using these two approaches, we first quantified the effects of different frequencies of STN DBS. High frequency stimulation was more effective than low frequency stimulation at reducing motor symptoms in the rat, as well as improving the error index of the computational model. In both the GPe and SNr/GPi from the rat and computational model, pathological low frequency oscillations were present. These low frequency oscillations were suppressed during effective high frequency DBS but not low frequency DBS. Furthermore, effective high frequency DBS generated oscillations in neural firing at the same frequency of stimulation. Such changes in neuronal firing patterns were independent of changes in firing rates.</p><p>Next, we investigated the effects of different temporal patterns of high frequency stimulation. Stimulus trains with the same number of pulses per second but different coefficients of variation (CVs) were delivered to the PD rat as well as PD model. 130 Hz regular DBS was more effective than irregular DBS at alleviating motor symptoms of the PD rat and improving error index in the computational model. However, the most irregular stimulation pattern was still more effective than low frequency stimulation. All patterns of DBS were able to suppress the pathological low frequency oscillations present in the GPe and SNr/GPi, but only 130 Hz stimulation increased high frequency 130 Hz oscillations. Therefore, the suppression of pathological low frequency neural oscillations was necessary but not sufficient to produce the maximum benefits of DBS.</p><p>The effectiveness of regular high frequency STN DBS was associated with a decrease in pathological low frequency oscillations and an increase in high frequency oscillations. These observations indicate that the effects of DBS are not only mediated by changes in firing rate, but also involve changes in neuronal firing patterns within the basal ganglia. The shift in neural oscillations from low to high frequency during effective STN DBS suggests that high frequency regular DBS suppresses pathological firing by entraining neurons to the stimulus pulses. </p><p>Therefore, results from this dissertation support the hypothesis that the underlying mechanism of effective DBS is its ability to entrain and regularize neuronal firing, therefore disrupting pathological patterns of activity within the basal ganglia.</p> / Dissertation

Page generated in 0.0753 seconds