• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 39
  • 14
  • 10
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 214
  • 214
  • 61
  • 51
  • 47
  • 41
  • 39
  • 28
  • 27
  • 27
  • 25
  • 24
  • 24
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

GABA/glutamate co-release in the entopeduncular nucleus: the role of glutamate from SstLHb neurons for goal-directed behavior in mouse

Liu, Yijun 13 March 2024 (has links)
The basal ganglia (BG) is known for its function not only in motor modulation but also in action selection and reward learning. There are two major anatomical pathways through the BG, the direct and the indirect pathways. The direct pathway starts from the striatum and then directly projects to the globus pallidus, pars interna (GPi) and the substantia nigra, pars reticulata (SNr) respectively, while the indirect pathway starts from the striatum but then indirectly projects to GPi and SNr through the globus pallidus, pars externa and then to the subthalamic nucleus. In addition, the output from GPi not only projects to the thalamus where it has been proposed to function in motor control, but also to the lateral habenula (LHb) where it has been proposed to function in outcome evaluation. Previous studies have found that there are three major genetically distinct neuron groups in the entopeduncular nucleus (EP) (rodent homologue of the primate GPi): 1) purely glutamatergic neurons projecting to LHb neurons expressing parvalbumin (PVLHb); 2) purely GABAergic neurons projecting to motor thalamic neurons expressing parvalbumin (PVThal); 3) GABA/glutamate co-releasing neurons projecting to LHb neurons expressing somatostatin (SstLHb). In this study, we knocked out the vesicular glutamate transporter 2 in SstLHb neurons through an adeno-associated virus in mice to test for the impact on goal-directed behavior using a probabilistic switching, two-armed bandit task (2ABT). Results obtained from the freely moving, water-restricted somatostatin-cre mice with the vesicular glutamate transporter 2 ablated in SstLHb neurons showed that: 1) there was neither improvement nor decline in their performance on the task; 2) they might be more distracted between trials while more concentrated within a trial; 3) they had an increase in the probability of switching between ports on consecutive trials when uncertainty in the location of the highly rewarded port was maximum compared to the control animals with intact glutamate release from SstLHb neurons to LHb. The success of the viral expression was then confirmed through whole-cell voltage-clamp recordings of postsynaptic neurons of the LHb, receiving projections from SstLHb neurons. In conclusion, our study has suggested that the glutamate release from the GABA/glutamate co-releasing neurons of EP projecting to LHb may play a role in reinforcement learning and motivation to obtain rewards, and the loss of glutamate in the GABA/glutamate co-releasing vesicles results in increasing uptake of GABA into these vesicles, leading to possible rebound burst firing of SstLHb neurons that eventually increases the sensitivity towards low rate of reward-delivery dramatically. / 2026-03-13T00:00:00Z
132

Computational modelling of the neural systems involved in schizophrenia

Thurnham, A. J. January 2008 (has links)
The aim of this thesis is to improve our understanding of the neural systems involved in schizophrenia by suggesting possible avenues for future computational modelling in an attempt to make sense of the vast number of studies relating to the symptoms and cognitive deficits relating to the disorder. This multidisciplinary research has covered three different levels of analysis: abnormalities in the microscopic brain structure, dopamine dysfunction at a neurochemical level, and interactions between cortical and subcortical brain areas, connected by cortico-basal ganglia circuit loops; and has culminated in the production of five models that provide useful clarification in this difficult field. My thesis comprises three major relevant modelling themes. Firstly, in Chapter 3 I looked at an existing neural network model addressing the Neurodevelopmental Hypothesis of Schizophrenia by Hoffman and McGlashan (1997). However, it soon became clear that such models were overly simplistic and brittle when it came to replication. While they focused on hallucinations and connectivity in the frontal lobes they ignored other symptoms and the evidence of reductions in volume of the temporal lobes in schizophrenia. No mention was made of the considerable evidence of dysfunction of the dopamine system and associated areas, such as the basal ganglia. This led to my second line of reasoning: dopamine dysfunction. Initially I helped create a novel model of dopamine neuron firing based on the Computational Substrate for Incentive Salience by McClure, Daw and Montague (2003), incorporating temporal difference (TD) reward prediction errors (Chapter 5). I adapted this model in Chapter 6 to address the ongoing debate as to whether or not dopamine encodes uncertainty in the delay period between presentation of a conditioned stimulus and receipt of a reward, as demonstrated by sustained activation seen in single dopamine neuron recordings (Fiorillo, Tobler & Schultz 2003). An answer to this question could result in a better understanding of the nature of dopamine signaling, with implications for the psychopathology of cognitive disorders, like schizophrenia, for which dopamine is commonly regarded as having a primary role. Computational modelling enabled me to suggest that while sustained activation is common in single trials, there is the possibility that it increases with increasing probability, in which case dopamine may not be encoding uncertainty in this manner. Importantly, these predictions can be tested and verified by experimental data. My third modelling theme arose as a result of the limitations to using TD alone to account for a reinforcement learning account of action control in the brain. In Chapter 8 I introduce a dual weighted artificial neural network, originally designed by Hinton and Plaut (1987) to address the problem of catastrophic forgetting in multilayer artificial neural networks. I suggest an alternative use for a model with fast and slow weights to address the problem of arbitration between two systems of control. This novel approach is capable of combining the benefits of model free and model based learning in one simple model, without need for a homunculus and may have important implications in addressing how both goal directed and stimulus response learning may coexist. Modelling cortical-subcortical loops offers the potential of incorporating both the symptoms and cognitive deficits associated with schizophrenia by taking into account the interactions between midbrain/striatum and cortical areas.
133

Comparing the radiological anatomy, electrophysiology, and behavioral roles of the pedunculopontine and subthalamic nuclei in the normal and parkinsonian brain

Aravamuthan, Bhooma Rajagopalan January 2008 (has links)
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) and DBS of the pedunculopontine nucleus (PPN) have been shown to be effective surgical therapies for Parkinson’s disease (PD). To better understand the PPN and STN as DBS targets for PD, this research compares the anatomy, electrophysiology, and motor control roles of these nuclei. PPN and STN connections were examined in vivo in human subjects and in the non-human primate using probabilistic diffusion tractography. Both the PPN and STN were connected with each other and with the motor cortex (M1) and basal ganglia. After studying these anatomical connections in primates, their functional significance was further explored in an anesthetized rat model of PD. Examination of the electrophysiological relationship between the PPN and basal ganglia in the presence of slow cortical oscillatory activity suggested that excitatory input from the STN may normally modulate PPN spike timing but that inhibitory oscillatory input from the basal ganglia output nuclei has a greater effect on PPN spike timing in the parkinsonian brain. To examine transmission and modulation of oscillatory activity between these structures at higher frequencies, LFP activity was recorded from the PPN and STN in PD patients performing simple voluntary movements. Movement-related modulation of oscillatory activity predominantly occurred in the α (8-12 Hz) and low β (12-20 Hz) frequencies in the STN but in the high β (20-35 Hz) frequencies in the PPN, supporting observations from rodent studies suggesting that oscillatory activity is not directly transmitted from the STN to the PPN in PD. Finally, to better understand the roles of the STN and PPN in large-scale movement, the effects of STN and PPN DBS on gait abnormalities in PD patients were studied. DBS of the STN appeared to improve gait by optimising executive gait control while DBS of the PPN appeared to restore autonomic gait control. These results have several implications for DBS patient selection, surgical targeting, and for understanding the mechanisms underlying DBS efficacy.
134

Exercise-induced changes in basal ganglia volume and their relation to cognitive performance

Becker, Linda, Kutz, D. F., Voelcker-Rehage, Claudia 14 November 2016 (has links) (PDF)
Physical activity, especially cardiovascular fitness training, has been shown to enhance cognitive performance and to counteract age-related cognitive decline1-5. Furthermore, regular physical activity has been demonstrated to diminish age-related volume-shrinkage in several brain regions particularly in the prefrontal cortex and hippocampus6-10. In the same vein, physical activity and high levels of cardiovascular fitness seem to enhance neurocognition during childhood11-13. In this context, the basal ganglia and its components, the caudate nucleus, the putamen and the globus pallidus, are of special interest as animal research indicates that exercise also seems to influence the molecular architecture and the metabolic capacity of the basal ganglia14,15. Besides their fundamental role in motor execution16, the basal ganglia are also involved in many cognitive functions like mental flexibility17, task-switching ability18 and cognitive control19. Furthermore, age-related disorders like Parkinson’s disease are related to a decline in the dopamine circuits of the basal ganglia20,21. The striatum is the input nucleus of the basal ganglia and is composed of caudate nucleus and putamen. The pars interna of the globus pallidus is (together with the substantia nigra pars reticulata) the output region of the basal ganglia and conveys information from the striatum to the thalamus and back to the frontal areas22. The striatum, which is essential for cognitive flexibility and attentional control, shows an increase during childhood and adolescence23,24 and a particularly rapid and early age-related change9,25 in older adults. Furthermore, the described cognitive functions are essential for academic success of children and young adults. Thus, it is of particular interest to find appropriate interventions that could mitigate both the volume-shrinkage and the (presumably) related cognitive decline in older adults and/or that could support academic success in children. In this review, we will summarize research that investigated whether physical activity has the potential to be such an intervention. First, we will show that neuroplasticity in the basal ganglia is possible in principle. Second, we will report studies where the relationship between physical fitness level and volume of the basal ganglia and its relation to cognitive performance were investigated. Besides cross-sectional studies, we will report studies that investigated exercise-induced changes in the volume of the basal ganglia and related changes in cognitive performance after long-term fitness interventions.
135

Imagerie per-opératoire des électrodes de stimulation cérébrale profonde et proposition d’une nouvelle modalité de repérage stéréotaxique indirect de la cible subthalamique / Intraoperative imaging of deep brain stimulation electrodes and proposition of a new normalized subthalamic target

Caire, François 20 December 2012 (has links)
L’efficacité de la stimulation cérébrale profonde subthalamique dans certains cas de maladie de Parkinson est maintenant bien établie. Toutefois, des progrès restent possibles, à la fois en terme de contrôle du geste chirurgical et en terme de définition de la cible chirurgicale. Dans la première partie de ce travail, nous nous sommes intéressés à l’optimisation du contrôle de l’implantation des électrodes de stimulation cérébrale profonde. Nous avons tout d’abord analysé rétrospectivement les résultats obtenus en réalisant une imagerie tridimensionnelle per-opératoire pour le contrôle de positionnement des électrodes. Nous nous sommes ensuite intéressés à la possibilité d’utiliser un repère de visée radiologique per-opératoire. Nous avons revu pour cela une série de patients ayant subi une réimplantation d’électrodes, pour lesquels l’électrode déjà en place était utilisée comme point de repère à la fois pour définir la cible de la réimplantation et pour contrôler radiologiquement l’implantation de la nouvelle électrode. Dans la seconde partie, nous avons travaillé à l’optimisation de la cible subthalamique. Nous avons tout d’abord évalué la pertinence du repérage du faisceau mamillo-thalamique sur des coupes IRM axiales comme marqueur de la coordonnée y du bord antérieur du noyau subthalamique. Ensuite, nous avons tâché de proposer une normalisation tridimensionnelle de l’espace stéréotaxique à partir de données recueillies dans une série de volontaires sains. Enfin, pour une série de patients opérés avec un bon résultat, nous avons cherché à corréler la position des contacts actifs en stimulation chronique avec des points de repères profonds visibles en IRM. Nous avons pu proposer ainsi une cible normalisée dont les coordonnées sont : x = 0,44xbord latéral du V3 + 10,71mm; y = 0,69xfaisceau mamillothalamique + 1,62 mm ou 0,34 distance CACP + 2,52 mm; z = 0,72 hauteur du thalamus – 16 mm. Cette cible sera évaluée dans une future étude prospective. / The clinical efficacy of subthalamic deep brain stimulation is now well established. Nevertheless, progress is possible, regarding especially (1) the accuracy of electrodes implantation and (2) the definition of the surgical target. In the first part of this work, we worked on the optimization of DBS electrodes implantation. First, we analyzed retrospectively the results obtained by using intra-operative 3D imaging for the control of microelectrodes and definite leads placement. Thereafter, we considered the possibility to use a radiological landmark for intraoperative controls. To this end, we studied the cases of patients who underwent reimplantation of DBS electrodes. The initial electrode (still implanted) was used as a landmark: (1) for the deifntion of the reimplantation target and (2) for the radiological control of the new lead positioning. In the second part, we worked on the optimization of the surgical target. First, we assessed the interest of the mamillothalamic tract as a landmark of the anteroposterior coordinate of the anterior border of the STN in MR axial images. Thereafter, we tried to identify MR landmarks for tridimensionnal normalization of the stereotactic space. Finally, we tried to correlate the coordinates of active contacts with MR-defined landmarks in a series of patients that had been operated with good clinical results. Based on our results, we can propose the following coordinates for a new normalized subthalamic target : x = 0.44xlat edge 3rd ventricle + 10.71mm; y = 0.69xmamillo-thalamic tract + 1.62 mm or 0.34 ACPC length + 2.52 mm; z = 0.72xthalamus height – 16 mm. We will assess this target in a future prospective study.
136

Développement et caractérisation fonctionnelle d' un modèle d'ablation génétiquement ciblée des neurones striatonigraux.

Revy, Delphine 26 October 2012 (has links)
Les ganglions de la base (GB) sont un ensemble de structures sous-corticales interconnectées impliquées dans l'apprentissage et le contrôle moteur mais aussi dans des processus motivationnels. Le fonctionnement des GB est fortement dépendant de l'équilibre d'activité entre les voies directe (striatonigrale) et indirecte (striatopallidale) par lesquelles le striatum, la principale structure d'entrée du réseau, contrôle les structures de sortie. L'objectif de ce travail était de développer et caractériser un modèle d'ablation sélective des neurones de la voie directe pour appréhender leur rôle dans les comportements impliquant les GB. Ce modèle repose sur l'expression, par transgénèse additive, du récepteur humain à la toxine diphtérique (DT) couplé à la GFP sous le contrôle du promoteur du gène slc35d3 exprimé dans les neurones striatonigraux et pas dans les striatopallidaux. La caractérisation cellulaire a été réalisée 15 jours après injection unilatérale de DT dans le striatum dorsal. La spécificité de l'atteinte est vérifiée par la diminution sélective (70%) de l'expression génique du précurseur de la substance P, marqueur de la voie directe, sans changement de celle du précurseur des enképhalines, marqueur de la voie indirecte. Les populations d'interneurones sont préservées à l'exception des interneurones cholinergiques dont le nombre est réduit de 50%. Un faisceau d'arguments démontre que cette baisse ne serait pas due à un effet direct de la DT sur les interneurones cholinergiques mais serait secondaire à la perte des neurones striatonigraux, mettant en évidence un lien étroit entre ces deux populations. / The basal ganglia (BG) are a set of subcortical structures implicated in motor learning and motor function as well as in motivational processes. BG functioning is thought to be highly dependent on the balanced activity between the direct (striatonigral) and indirect (striatopallidal) pathways by which the striatum, the main input station of the network, controls the output structures. This study aimed at developing and characterizing a model of selective ablation of the direct pathway to decipher its specific role in BG-related functions and disorders. The promoter of the slc35d3 gene, which is enriched in the striatonigral neurons, has been used to drive expression of the human diphtheria toxin (DT) receptor coupled to GFP selectively in these neurons by additive transgenesis. The cellular characterization has been performed 15 days after unilateral DT injection in the dorsal striatum. The ablation specificity is demonstrated by the selective decrease (70%) in substance P precursor mRNA levels, a marker of the direct pathway, with no change in enkephalin precursor gene expression, a marker of the indirect pathway. Striatal interneuron populations are spared, except the cholinergic population, which is reduced by about 50%. Evidence is provided that this loss may not be a direct effect of DT but a consequence of striatonigral neuron loss, revealing their crucial role for cholinergic interneuron viability. Then, we analyzed the functional consequences of the bilateral lesion of the striatonigral pathway (50-60% neuronal loss) either in the dorsal striatum or in the nucleus accumbens (NAc).
137

Etude de la diversité neuronale au sein du Globus Pallidus : analyse neurochimique, électrophysiologique et manipulation optogénétique d’un sous-type neuronal chez le rongeur / Study of neuronal diversity in the Globus Pallidus : neurochemical, electrophysiological analysis and optogenetic manipulation of neuronal subtype in rodents

Abdi, Azzedine 28 November 2013 (has links)
Le réseau des ganglions de la base (GB) est un ensemble de structures sous corticales, dont la principale fonction est le contrôle du mouvement volontaire. Le Globus Pallidus (GP), équivalent du GPe chez le primate, est un noyau constitué exclusivement de neurones GABAergiques, qui joue un rôle clé dans le fonctionnement des GB de par ses projections inhibitrices diffuses sur l’ensemble des structures de ce macrocircuit. Bien qu’une diversité neuronale au sein du GP ait été suggérée sur les bases de l’origine embryonnaire, de l’expression de protéines spécifiques ou encore de l’activité électrique des neurones, ces différents paramètres n’ont pas été corrélés de manière claire. Notre premier objectif a donc été de corréler les propriétés membranaires de neurones du GP enregistrés en patch-clamp sur des tranches de cerveau de rat avec l’expression spécifique de deux marqueurs neuronaux : une protéine liant le calcium, la parvalbumine (PV) ou un facteur de transcription, Forkhead Box 2 (FoxP2). Nous avons observé des différences électrophysiologiques significatives entre les neurones PV-positifs et FoxP2-positifs. Ce résultat nous a amené à formuler l’hypothèse qu’ayant des propriétés distinctes, les neurones PV-positifs et FoxP2-positifs pouvaient être connectés de manière différente au sein du réseau des ganglions de la base. Nous avons donc réalisé des expériences de traçage neuronal in vivo afin d’identifier les structures cibles de chaque sous-population. Nous montrons que les neurones PV-positifs projettent sur les structures de sortie des ganglions de la base tandis que les neurones FoxP2-positifs projettent uniquement sur le striatum. Enfin, le GP étant majoritairement composé de neurones PV-positifs, nous avons décidé de manipuler spécifiquement l’activité électrique de cette population in vitro et in vivo grâce à l’optogénétique. Nous présentons des résultats montrant que la modulation de l’activité électrique des neurones PV-positifs modifie le comportement moteur chez l’animal vigile. Nos résultats d’immunohistochimie et d’électrophysiologie in vitro démontrent pour la première fois l’existence d’une diversité neuronale au sein du GP. Nos expériences constituent la première étude du rôle des neurones PV-positifs dans le contrôle du mouvement volontaire. / Globus Pallidus (GP in Rodents; GPe in Primates) which belongs to the indirect pathway of basal ganglia is often, if not always, considered as an homogeneous entity which simply relays striatal information through the subthalamic nucleus, downstream to the output of basal ganglia, the substantia nigra pars reticulata. Prototypical GP neurons are often described as fast-spiking GABAergic cells which express parvalbumin (PV) as a neurochemical marker. However, cellular heterogeneity in GP has been suggested by anatomical, neurochemical, fate mapping analysis and electrophysiological activity in vivo but a clear demonstration of the existence of distinct cell types in GP, which requires by definition correlation of electrophysiological activity with neurochemistry and structure, is still missing. The objective of my PhD was i) to determine if the expression of specific neuronal markers in GP neurons is correlated with specific electrophysiological properties, ii) to understand the function of identified cell types in motor control, in order to prove that neuronal diversity exists and matters in GP. We show that electrical activity and repertoire of ionic channels differ in PV-positive and FoxP2-positive neurons. We demonstrate that PV-positive neurons do project on downstream structures whereas FoxP2-positive neurons exclusively target striatum. We report that manipulating PV-positive neurons using optogenetics induce changes in motor behavior. Thus, our results contribute to highlight the function of GP in motor control.
138

Differential involvement of striatal medium spiny neurons subpopulations on decision-making processes in mice

Chaves Rodriguez, Elena 03 May 2019 (has links) (PDF)
Decision-making is necessary to adapt to the variable environment in everyday life. During this process, our goal is to select the most beneficial course of action in order to obtain the best outcome, to develop efficient choice strategies. That is, estimating the probability to obtain any of the available outcomes as well as their value. Moreover, poor decision-making ability is a common symptom to several psychiatric disorders, such as pathological gambling, depression, schizophrenia and bipolar disorder.The cognitive and emotional mechanisms controlling decision-making processes depend, among others, on the striatum, Basal Ganglia’s main input nucleus. The striatum is divided into the dorsal striatum, responsible for motor and cognitive control that initiate actions (Dorsomedial Striatum, DMS) and generate habits (Dorsolateral Striatum, DLS), and Nucleus Accumbens (NAc) which manages reward and the influence of motivation on motor behavior. A2A-expressing and D1-expressing medium spiny neurons (iMSNs and dMSNs, respectively), accounting for 95% of striatal neurons act in coordination to generate adaptive behavioral responses. It has been shown that imbalanced activity between these two populations leads to abnormal behaviors: overactivation of striatonigral neurons promotes an increased locomotion as well as a higher sensitivity for reward, whereas overactivation of striatopallidal neurons produces the exact opposite effects. However, the specific contributions to decision-making of these two populations in each striatal territory remains unclear. Here, we made use of a chemogenetic (DREADD) tool to manipulate striatal projection neurons’ activity within each specific striatal area and tested their role in a decision-making operant protocol. To do so, we used two different mouse models that allowed us to target specifically iMSNs (A2A-Cre mice) or dMSNs (D1-Cre mice) and induce neuronal-specific expression of the hM3Dq DREADD receptor. CNO-mediated activation of these receptors led to neuronal activation. Then, we tested DREADD-dependent activation of MSNs during the Iowa Gambling Task (IGT), a test used to assess the influence of different rewards on choice and to evaluate the ability of mice to develop advantageous choice strategies. We found an exclusive role of DMS’ dMSNs in controlling choice preference, as DREADD-induced activation of these neurons produced a loss of preference. Manipulations of MSNs in other striatal areas led to altered task performance without affecting choice preference.These results contribute to a better understanding of the role of the striatum on decision-making and moreover, suggest the existence of a high level of functional specialization in this area, a fact that could be explained by the local circuits in which each MSN population is involved. / Doctorat en Sciences biomédicales et pharmaceutiques (Médecine) / info:eu-repo/semantics/nonPublished
139

Effets de la modulation des canaux potassium SK et Kv4 sur les déficits moteurs et cognitifs de la maladie de Parkinson / Modulation effects of SK and KV4 potassium channels on motor and cognitive deficits of Parkinson's disease

Aidi Knani, Sabrine 19 December 2014 (has links)
La maladie de Parkinson (MP) est une maladie neurodégénérative caractérisée par une perte dopaminergique (DA) de la voie nigro-striée. Cette dégénérescence des neurones DA, induit un déséquilibre entre les transmissions dopaminergique, GABAergique et glutamatergique au sein des ganglions de la base qui se traduit par des troubles de l'excitabilité neuronale aboutissant à l'apparition des symptômes moteurs et non-moteurs. Nous avons étudié l'effet de la modulation des canaux SK et Kv4 par des toxines issues de venins d'animaux. Pour ce faire, nous avons utilisé deux modèles lésionnels à la 6-hydroxydopamine (6-OHDA): une lésion bilatérale partielle du striatum mimant la phase précoce de la MP pour tester les déficits cognitifs et émotionnels, et une lésion unilatérale totale au niveau de la substance noire mimant la rigidité et la bradykinésie en phase tardive pour tester les déficits moteurs. Nos résultats montrent que le blocage des canaux SK par l'apamine (injection systémique, 0.1-0.3 mg/kg) améliore partiellement et transitoirement les déficits moteurs dans le test du cylindre et la rotation induite par l'apomorphine dans le modèle tardif de la MP. L'AmmTX3 (injection intrastriatale, 0.2-0.4 g), réduit les déficits moteurs et restaure des comportements cognitifs déficitaires (mémoire sociale et spatiale à court terme) et émotionnels (anxiété), après une dégénérescence DA bilatérale et partielle. L'ensemble de ces données suggère que l'inhibition pharmacologique de l'activité des canaux SK par l'apamine et Kv4 par l'AmmTX3, pourrait représenter une voie thérapeutique innovatrice quant au traitement des déficits moteurs, cognitifs et émotionnels de la MP. / Parkinson's disease (PD) is a neurodegenerative disease associated to a loss of dopaminergic nigrostriatal pathway that innervates the basal ganglia (GB). The DA neuron degeneration in PD induces imbalance between dopaminergic transmission, GABAergic and glutamatergic resulting in impaired neuronal excitability leading to the onset of motor and non-motor symptoms. Potassium channels, Kv4 and SK, are extensively involved in the phenomenon of neuronal excitability. We addressed the question of whether further blockade of SK or Kv4 activity could restore normal GB function in vivo. In this aim, we used a neurotoxin, 6-hydroxydopamine (6-OHDA) to produce two lesional models of Parkinson's disease in rats that mimics the cognitive and emotional deficits of the early phase of PD (partial and bilateral striatal lesions) and the motor deficits observed in the late phase of the disease (total unilateral nigral lesion). Apamin from bee venom (systemic injection, 0.1-0.3 mg/kg) and AmmTX3 from scorpion venom (intrastriatal injection, 0.2-0.4 g) were chosen to block SK and Kv4 channels respectively.In a first study, apamin treatment partially reduced motor deficits in the cylinder test and the rotation induced by apomorphine. In the second study, the AmmTX3 also decreased parkinsonian motor deficits. This late toxin restored cognitive behaviors (short-term social and spatial memory) and emotion (anxiety).Taken together, these results underlie the importance of SK channels as modulators of neuronal excitability of Kv4 channels as players of the homeostatic responses, and more importantly, provide potential targets for adjunctive therapies for Parkinson's disease.
140

Padrões de funcionamento cerebral em voluntários saudáveis antes e após o uso de antidepressivo: estudo de ressonância magnética funcional durante indução emocional através de estimulação visual / Patterns of brain functioning in healthy volunteers before and after the use of antidepressant: a study of functional magnetic resonance imaging during emotional induction through visual stimulation

Almeida, Jorge Renner Cardoso de 18 June 2009 (has links)
INTRODUÇÃO: O processamento emocional pelo cérebro humano tem sido atualmente investigado através do uso de ressônancia magnética funcional (RMf). A RMf possibilita o estudo in vivo e não invasivo de mudanças na atividade cerebral regional em voluntários humanos saudáveis. O processamento emocional pode ser modulado através do uso de antidepressivos que influenciam sistemas neurais relacionados ao processamento emocional, através da modulação da ação de neurotransmissores como a serotonina e a noradrenalina. A clomipramina, um antidepressivo tricíclico, tem sido relacionada com efeitos de resposta clínica mesmo em voluntários saudáveis. Estudos utilizando a RMf permitem a investigação do efeito de antidepressivos nos sistemas neurais envolvidos no processamento emocional em indivíduos saudáveis que apresentam resposta ao uso destes medicamentos comparados a sujeitos que não apresentam resposta ao tratamento. MÉTODOS: Nesta tese, dezoito voluntários saudáveis foram investigados em relação a mudanças de atividade neural em resposta à indução emocional através da apresentação de fotografias do International Affective Pictures System (IAPS). Foram estudadas particularmente as emoções de raiva, felicidade e medo. Os voluntários foram submetidos ao tratamento prolongado com doses baixas de clomipramina por quatro semanas. A amostra foi subdividida em respondedores (n=6) e não respondedores (n=12) ao tratamento com clomipramina. A atividade neural foi estimada com o uso da RMf, através da mensuração do efeito blood oxygenation level dependent (BOLD). As imagens foram processadas e analisadas usando o programa Statistical Parametric Mapping (SPM). Indivíduos não respondedores foram comparados sob o efeito e na ausência de efeito da clomipramina, através de comparações planejadas utilizando t-teste pareado. Indivíduos respondedores foram comparados com os não respondedores sob o efeito da clomipramina através de t-teste não pareado. RESULTADOS: Nos voluntários não respondedores à clomipramina, a comparação entre os estados medicado versus não medicado evidenciou menor atividade neural na região da amídala quando sob efeito da clomipramina em resposta a estímulos de valência negativa. Demonstramos ainda, em paradigmas de valência positiva e negativa, diminuição da atividade neural no giro do cíngulo anterior, na ínsula e no putâmen na vigência da medicação. Quando foram comparados os indivíduos respondedores com os não respondedores sob efeito de clomipramina, um aumento consistente de atividade cerebral foi observado nos voluntários respondedores na região da ínsula. CONCLUSÕES: O uso prolongado de doses baixas de clomipramina apresentou ação em regiões cerebrais envolvidas com o processamento emocional. Quando indivíduos não respondedores foram comparados sob o efeito e sem o efeito da clomipramina, foi observada menor atividade amidalar durante o tratamento em resposta a estímulos de valência negativa, possivelmente devido à menor demanda neural na avaliação inicial do estímulo de valência negativa. Também foi observada menor ativação no giro do cingulo anterior, na ínsula e no putâmen na vigência do uso da clomipramina, possivelmente em associação a uma diminuição do mapeamento cortical de funções interoceptivas em resposta a estímulos emocionais positivos e negativos. Quando indivíduos respondedores foram comparados com os não respondedores ao tratamento prolongado com doses baixas de clomipramina, foi observada maior ativação insular nos indivíduos respondedores quando estavam sob efeito de clomipramina; estes resultados indicam que possivelmente os indivíduos que respondem ao tratamento antidepressivo são os que percebem mais as alterações de seu estado corporal durante o processamento emocional. / INTRODUCTION: The emotional processing by the human brain has now been investigated through the use of functional magnetic resonance imaging (fMRI). The fMRI technique allows the noninvasive study of in vivo changes in regional brain activity in healthy human volunteers. The emotional processing may be modulated through the use of antidepressants that influence neural systems linked to emotional processing, by modulating the action of neurotransmitters such as serotonin and norepinephrine. Clomipramine, a tricyclic antidepressant, has been reported to elicit clinical response even in healthy volunteers. Studies using fMRI allow the investigation of the effect of antidepressants on neural systems involved in emotional processing in healthy subjects showing response to the use of antidepressant drugs compared to subjects who do not respond to treatment. METHODS: In this thesis, eighteen healthy volunteers were investigated in relation to changes in neural activity in response to emotional induction through the presentation of photos of the International Affective Picture System (IAPS). We studied especially the emotions of anger, happiness and fear. The volunteers were subjected to prolonged treatment with low doses of clomipramine for four weeks. The sample was divided into responders (n = 6) and non-responders (n = 12) to treatment with clomipramine. The neural activity was estimated by using fMRI, by measuring the blood oxygenation level dependent effect (BOLD). Images were processed and analyzed using the Statistical Parametric Mapping (SPM) program. Non-responders were compared under two conditions: when using clomipramine, and after drug washout, using paired t-tests. Individuals who responded to clomipramine treatment were compared with non-responders under the effect of the drug by independent t-test. RESULTS: In volunteers not responding to clomipramine, a comparison between the non-medicated versus medicated states showed less neural activity in the region of the amygdala when under effect of clomipramine in response to stimuli of negative valence. We also demonstrated, both in the paradigms of positive and negative valence, decreased neural activity in the anterior cingulate gyrus, insula and putamen during the medicated state. When responders were compared with non-responders under the effect of clomipramine, a consistent increase in brain activity was observed in the former group in the insula. CONCLUSIONS: The prolonged use of low doses of clomipramine induced activity changes in brain regions involved in emotional processing. When non-responders were compared under the influence and without the effect of clomipramine, the amygdala displayed lower activity during treatment in response to stimuli of negative valence, possibly due to lower demand in the initial evaluation of stimuli of negative valence. There was less activation in the anterior cingulate gyrus, insula and putamen during the use of clomipramine, possibly in association with a decrease in the cortical mapping of interoceptive changes in response to positive and negative emotional stimuli. When responders were compared with non-responders after prolonged treatment with low doses of clomipramine, insular activation was greater in responders when individuals were under the effect of clomipramine. These results indicate that individuals who respond to antidepressant treatment are those who perceive more changes in their bodily state during emotional processing.

Page generated in 0.038 seconds