• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 56
  • 56
  • 35
  • 29
  • 27
  • 26
  • 24
  • 20
  • 14
  • 14
  • 13
  • 13
  • 12
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

A High-Efficiency Grid-Tie Battery Energy Storage System

Qian, Hao 25 October 2011 (has links)
Lithium-ion based battery energy storage system has become one of the most popular forms of energy storage system for its high charge and discharge efficiency and high energy density. This dissertation proposes a high-efficiency grid-tie lithium-ion battery based energy storage system, which consists of a LiFePO4 battery based energy storage and associated battery management system (BMS), a high-efficiency bidirectional ac-dc converter and the central control unit which controls the operation mode and grid interface of the energy storage system. The BMS estimates the state of charge (SOC) and state of health (SOH) of each battery cell in the pack and applies active charge equalization to balance the charge of all the cells in the pack. The bidirectional ac-dc converter works as the interface between the battery pack and the ac grid, which needs to meet the requirements of bidirectional power flow capability and to ensure high power factor and low THD as well as to regulate the dc side power regulation. A highly efficient dual-buck converter based bidirectional ac-dc converter is proposed. The implemented converter efficiency peaks at 97.8% at 50-kHz switching frequency for both rectifier and inverter modes. To better utilize the dc bus voltage and eliminate the two dc bus bulk capacitors in the conventional dual-buck converter, a novel bidirectional ac-dc converter is proposed by replacing the capacitor leg of the dual-buck converter based single-phase bidirectional ac-dc converter with a half-bridge switch leg. Based on the single-phase bidirectional ac-dc converter topology, three novel three-phase bidirectional ac-dc converter topologies are proposed. In order to control the bidirectional power flow and at the same time stabilize the system in mode transition, an admittance compensator along with a quasi-proportional-resonant (QPR) controller is adopted to allow smooth startup and elimination of the steady-state error over the entire load range. The proposed QPR controller is designed and implemented with a digital controller. The entire system has been simulated in both PSIM and Simulink and verified with hardware experiments. Small transient currents are observed with the power transferred from rectifier mode to inverter mode at peak current point and also from inverter mode to rectifier mode at peak current point. The designed BMS monitors and reports all battery cells parameters in the pack and estimates the SOC of each battery cell by using the Coulomb counting plus an accurate open-circuit voltage model. The SOC information is then used to control the isolated bidirectional dc-dc converter based active cell balancing circuits to mitigate the mismatch among the series connected cells. Using the proposed SOC balancing technique, the entire battery storage system has demonstrated more capacity than the system without SOC balancing. / Ph. D.
32

Designing Energy-Sensitive Interactions : Conceptualising Energy from the Perspective of Electric Cars

Lundström, Anders January 2016 (has links)
As technology is increasingly used in mobile settings, energy and battery management is becoming a part of everyday life. Many have experienced how quickly a battery can be depleted in a smartphone, laptop or electric cars, sometimes causing much distress. An important question is how we can understand and work with energy as a factor in interaction design to enable better experiences for end-users. Through design-oriented research, I have worked with the specific case of electric cars, which is currently a domain where people struggle in terms of energy management. The main issue in this use case is that current driving range estimates cause distrust and anxiety among drivers. Through sketches, prototypes and studies, I investigated causes as well as possible remedies to this situation. My conclusion is that instead of providing black-boxed predictions, in-car interfaces should expose the logics of estimates so that drivers know how their own actions in e.g. driving style, climate control, and other equipment, affects energy use. Revealing such energy mechanisms will not only empower the driver, it will also acknowledge the impact of variables that cannot be predicted automatically. In this work, understanding the dynamic aspects of energy has emerged as central to interaction with systems. This points to a need to design energy sensitive interactions - focusing on supporting users to find the right balance between energy use and the experiential values sought for. To ease design of energy sensitive interactions, energy use is divided into three different categories with accompanying ideals. These are exergy (always needed to achieve the required interaction), intergy (controllable and changing over time and use, needs to be addressed in design), and anergy (always waste that needs to be reduced). This articulation highlights aspects of energy that are specific to interaction design, and possible aspects to expose to allow more energy-efficient interactions in use. / I takt med att vi använder alltmer teknik i mobila sammanhang blir energi- och batterihantering en allt större del av vår vardag. Många har erfarenheter av de besvär som ett plötsligt urladdat batteri i en mobiltelefon, laptop eller elbil kan orsaka. En central fråga för att uppnå bättre användarupplevelser är hur vi kan förstå och arbeta med energi som en faktor i design av interaktion med mobil teknik. Genom designdriven forskning har jag arbetat specifikt med interaktionen i elbilar, en situation där många brottas med just hantering och förståelse av begränsad energi. En specifik utmaning i denna kontext är den misstro som många upplever kring existerande system för räckviddsberäkning. Genom skisser, prototyper och användarstudier har jag undersökt orsaker och praktiska lösningar på detta problem. Min slutsats är att bilens gränssnitt bör exponera den inre logik som beräkningarna bygger på, så att föraren förstår hur egna handlingar, såsom körsätt och användning av t ex kupévärmare, påverkar energiförbrukning och räckvidd. Detta leder till ökad upplevelse av kontroll för föraren, och samtidigt till mer tillförlitliga beräkningar då det tar hänsyn till variabler som inte kan förutsägas automatiskt. I arbetet har dynamiska aspekter av energi framträtt som centralt i användning av interaktiva system. Detta pekar på behovet av att designa energikänsliga interaktioner, som hjälper användaren att förstå balansen mellan energiåtgång och bruksvärde. För att stödja design av energikänsliga interaktioner artikuleras tre kategorier av energianvändning i interaktiva system. Dessa är exergi (behövs för att uppnå tänkt interaktion), intergi (kontrollerbar och föränderlig över tid och användning, måste adresseras med design), och anergi (är alltid ett slöseri som behöver reduceras). Denna artikulation belyser specifikt de aspekter av energiförbrukningen som varierar genom användning, och som skulle kunna exponeras för mer energieffektiv interaktion med ny teknik. / <p>QC 20160429</p>
33

Optimal control of hybrid electric vehicles for real-world driving patterns

Vagg, Christopher January 2015 (has links)
Optimal control of energy flows in a Hybrid Electric Vehicle (HEV) is crucial to maximising the benefits of hybridisation. The problem is complex because the optimal solution depends on future power demands, which are often unknown. Stochastic Dynamic Programming (SDP) is among the most advanced control optimisation algorithms proposed and incorporates a stochastic representation of the future. The potential of a fully developed SDP controller has not yet been demonstrated on a real vehicle; this work presents what is believed to be the most concerted and complete attempt to do so. In characterising typical driving patterns of the target vehicles this work included the development and trial of an eco-driving driver assistance system; this aims to reduce fuel consumption by encouraging reduced rates of acceleration and efficient use of the gears via visual and audible feedback. Field trials were undertaken using 15 light commercial vehicles over four weeks covering a total of 39,300 km. Average fuel savings of 7.6% and up to 12% were demonstrated. Data from the trials were used to assess the degree to which various legislative test cycles represent the vehicles’ real-world use and the LA92 cycle was found to be the closest statistical match. Various practical considerations in SDP controller development are addressed such as the choice of discount factor and how charge sustaining characteristics of the policy can be examined and adjusted. These contributions are collated into a method for robust implementation of the SDP algorithm. Most reported HEV controllers neglect the significant complications resulting from extensive use of the electrical powertrain at high power, such as increased heat generation and battery stress. In this work a novel cost function incorporates the square of battery C-rate as an indicator of electric powertrain stress, with the aim of lessening the affliction of real-world concerns such as temperatures and battery health. Controllers were tested in simulation and then implemented on a test vehicle; the challenges encountered in doing so are discussed. Testing was performed on a chassis dynamometer using the LA92 test cycle and the novel cost function was found to enable the SDP algorithm to reduce electrical powertrain stress by 13% without sacrificing any fuel savings, which is likely to be beneficial to battery health.
34

Design of a State of Charge (SOC) Estimation Block for a Battery Management System (BMS). / Entwicklung eines Ladezustand Block für Battery Management System (BMS)

Cheema, Umer Ali January 2013 (has links)
Battery Management System (BMS) is an essential part in battery powered applications where large battery packs are in use. BMS ensures protection, controlling, supervision and accurate state estimation of battery pack to provide efficient energy management. However the particular application determines the accuracy and requirements of BMS where it has to implement; in electric vehicles (EVs) accuracy cannot be compromised. The software part of BMS estimates the states of the battery pack and takes the best possible decision. In EVs one of the key tasks of BMS’s software part is to provide the actual state of charge (SOC), which represents a crucial parameter to be determined, especially in lithium iron phosphate (LiFePO4) batteries, due to the presence of the high hysteresis behavior in the open circuit voltage than other kind of lithium batteries. This hysteresis phenomena appears with two different voltage curves during the charging and discharging process. The value of the voltage that the battery is going to assume during the off-loading operation depends on several factors, such as temperature, loop direction and ageing. In this research work, hybrid method is implemented in which advantages of several methods are achieved by implementing one technique combined with another. In this work SOC is calculated from coulomb counting method and in order to correct the error of SOC, an hysteresis model is developed and used due to presence of hysteresis effect in LiFePO4 batteries. An hysteresis model of the open circuit voltage (OCV) for a LiFePO4 cell is developed and implemented in MATLAB/Simulink© in order to reproduce the voltage response of the battery when no current from the cell is required (no load condition). Then the difference of estimated voltage and measured voltage is taken in order to correct the error of SOC calculated from coulomb counting or current integration method. To develop the hysteresis model which can reproduce the same voltage behavior, lot of experiments have been carried out practically in order to see the hysteresis voltage response and to see that how voltage curve change with the variation of temperature, ageing and loop direction. At the end model is validated with different driving profiles at different ambient temperatures.
35

Bateriová oblouková svářečka / Battery Arc Welder

Hrdina, Adam January 2017 (has links)
This master’s thesis deals with the design and fabrication of DC arc welder supplied from its own rechargeable battery. Battery cells’ type is LiFePO4 which can provide high currents even at relatively low capacity. The BMS circuits are designed within the battery. Major power part of the welder is a step-down converter with synchronously switching low transistors at the position of free-wheel diode. The converter operates at 100 kHz frequency. The current of the battery welder can be regulated in the range from 0 to 120 A.
36

Monitorovací a ochranný systém baterií / Battery monitoring and protection system

Hladík, Jan January 2018 (has links)
This work deals with design of battery management system. Requirements for battery management system and its conception is discussed in the first part of the work. System is able to disconnect load or charger from battery using MOS-FET transistors. It measures battery cell's voltages and is capable of passive balancing. Microcontroller is used for data processing and system control. Schematics, printed circuit board layout and control algorithm was designed. Prototype of the battery management system was then manufactured and tested.
37

Operando Degradation Diagnostics and Fast Charging Analytics in Lithium-Ion Batteries

Amy M Bohinsky (10710579) 06 May 2021 (has links)
<p>Fast charging is crucial to the proliferation of electric vehicles. Fast charging is limited by lithium plating, which is the deposition of lithium metal on the anode surface instead of intercalation of lithium into the anode. Lithium plating causes capacity fade, increases cell resistance, and presents safety issues. A fast charging strategy was implemented using a battery management system (BMS) that avoided lithium plating by predicting the anode impedance. Commercial pouch cells modified with a reference electrode were cycled with and without the BMS. Cells cycled with the BMS avoided lithium plating but experienced significant degradation at the cathode. Cells cycled without the BMS underwent extensive lithium plating at the anode. Capacity loss was differentiated into irreversible and irretrievable capacity to understand electrode-based degradation mechanisms. Post-mortem analysis on harvested electrodes showed that the BMS cycled cells exhibited minimal anode degradation and had a two-times higher capacity loss on the cathode. The cells cycled without the BMS had extensive anode degradation caused by lithium plating and a seven-times higher capacity loss on the anode. </p> <p> </p> <p>Understanding and preventing the aging mechanisms of lithium-ion batteries is necessary to prolong battery life. Traditional full cell measurements are limited because they cannot differentiate between degradation processes that occur separately on anode and cathode. A reference electrode was inserted into commercial cylindrical lithium-ion cells to deconvolute the anode and cathode performance from the overall cell performance. Two configurations of the reference electrode placement inside the cell were tested to find a location that was stable and had minimal interference on the full cell performance. The reference electrode inside the mandrel of the cylindrical cell had stable potential measurements for 80 cycles and at different C-rates and had minimal impact on the full cell performance.<b></b></p>
38

Termisk hantering av litium-jon- batterier i elektriska drivsystem / Thermal management of lithium-ion batteries in electric vehicle drives

BERGVALL, JOHAN, JOHANSSON, SEBASTIAN January 2012 (has links)
The automotive market is currently undergoing a historical change where stricter emission legislations and ever increasing fuel costs have intensified the search for effective alternatives to the conventional internal combustion engine, which has resulted in a substantial trend towards electrification of powertrains. Storage of electrical energy is the fundamental component in this technology where the lithium-ion batteries are currently considered as the most appropriate solution. Lithium-ion batteries, however, as other types of batteries, can only be used efficiently and durably within a specific temperature range.This Master thesis has been carried out in collaboration with Electroengine in Sweden AB, situated in Uppsala, which has an ongoing project regarding development of a modular battery system for electric powertrains. The project is at a stage where an initial prototype has been developed which provides the foundation for this thesis. The study has addressed the battery system performance from a thermal perspective, in order to validate the ability of the system to create a thermally serviceable environment for the lithium-ion battery cells. The work has therefore been focused on verifying whether the existing structure provides sufficient heating and cooling functions. Based on the validation review, the current prototype's performance is presented and suggestions for improvements are submitted.Knowledge in the relevant area has been acquired through an extensive pre study concerning competing temperature management systems, basic thermodynamics, potential pathways for heat transfer and temperature-related characteristics for battery cells. Further, testing was conducted to obtain cell-generated heat power at varying load, state of charge and temperature. Henceforth the test data was used for the creation of simulation models in (COMSOL, 2012) and numerical analysis in (MATLAB, 2011) regarding the battery system's thermal behavior for various operating conditions in order to verify the system's temperature-regulating sustainability and to design the required cooling and heating functions.The conclusion of the study indicates that the existing design possesses acceptable dimensioning of cooling and heating properties. For further development of the battery system's temperature regulatory functions, a number of system improvement measures are necessary. Prioritized improvements are adaptive cooling which is only activated when needed, and cooling through the connecting plates of the battery cells. Implementation of improvement measures will result in an extended lifespan of the battery cells, and higher overall efficiency of the battery system. / Fordonsmarknaden genomgår idag en historisk förändring där striktare utsläppslagstiftningar och ständigt ökande bränslekostander har intensifierat sökandet efter effektiva alternativ till den konventionella förbränningsmotorn, vilket medfört en omfattande trend mot elektrifiering av drivlinor. Lagring av elektrisk energi utgör den fundamentala komponenten inom denna teknologi där litium-jon-batterier idag anses som den mest adekvata lösningen. Litium-jon-batterier är dock, såsom andra typer av batterier, temperatursensibla och kan endast brukas effektivt och durabelt inom ett specifikt temperaturområde.Detta examensarbete har genomförts i samarbete med Electroengine in Sweden AB i Uppsala som har ett pågående projekt där ett modulärt batterisystem för elektriska drivlinor utvecklas. Projektet befinner sig i ett stadie där en initial prototyp framtagits vilken utgör fundamentet för ifrågavarande examensarbete. Genomförd studie har behandlat batterisystemets prestanda ur ett termiskt perspektiv med syfte att validera systemets förmåga att skapa en termiskt tjänlig miljö för ingående litium-jon-battericeller. Arbetet har följaktligen fokuserats på att verifiera huruvida den befintliga konstruktionen tillgodoser satisfierande värmnings- och kylningsfunktioner. Utifrån valideringsgranskningen har den befintliga prototypens prestanda presenterats och förbättringsförslag framlagts.Via en omfattande förstudie berörande konkurrerande temperaturhanteringsystem, grundläggande termodynamik, potentiella vägar för värmetransport och battericellernas temperaturrelaterade egenskaper inhämtades en solid kunskapsbas inom berört område. Vidare genomfördes tester för erhållande av cellgenererad värmeeffekt vid varierande last, laddningsstatus och temperatur. Fortsättningsvis brukades testdata för upprättande av simuleringsmodeller i (COMSOL, 2012) och numerisk analys i (MATLAB, 2011) gällande batterisystemets termiska beteende för olika driftförhållanden för att därigenom verifiera systemets temperaturreglerande bärkraftighet och dimensionera erforderlig kylning och värmning.Slutsaten av genomförd studie är att den befintliga konstruktionen innehar godtagbar dimensionering av kyl- respektive värmningsfunktion för tilltänkt applikation. För vidareutveckling av batterisystemets temperaturreglerande funktion återfinns ett flertal systemförbättrande åtgärder där prioriterade förbättringar utgörs av adaptiv kylning som endast aktiveras vid behov och kylning via battericellernas kontaktbleck. Implementering av förbättringsförslag resulterar i förlängd livslängd för battericellerna samt högre total verkningsgrad för batterisystemet.
39

Fault Diagnosis for Lithium-ion Battery System of Hybrid Electric Aircraft.

Cheng, Ye 24 August 2022 (has links)
No description available.
40

The Development of an Integrated Battery Management System and Charger

Vo, Thomas V. 17 September 2014 (has links)
No description available.

Page generated in 0.1092 seconds