• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 4
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Desenvolvimento de modelo analítico para determinação da resistência ao cisalhamento de nós de pórtico externos de concreto armado / Development of analytical model for predicting the shear strength of exterior reinforced concrete beam-column joints

Matheus Fernandes de Araújo Silva 15 March 2013 (has links)
Propõe-se um modelo analítico para determinação da resistência ao cisalhamento de nós de pórtico externos em estruturas de concreto armado. Faz-se um estudo de modelos analíticos propostos por pesquisadores e sua aplicação em uma extensa base de dados com resultados experimentais de diferentes ligações, a fim de verificar a eficiência de cada modelo analítico. Em paralelo realiza-se uma análise paramétrica por meio de simulação numérica utilizando o software DIANA® de maneira a compreender o comportamento do nó externo analisando a influência da geometria, nível de tensões no pilar, taxa de armadura da viga e taxa de estribos, e assim propõe-se um modelo de cálculo para a resistência ao cisalhamento com base nos resultados desta análise paramétrica. Por fim o modelo analítico proposto é aplicado na base de dados apresentando bons resultados e comprovando sua eficácia tanto para nós de pórtico externos sem estribo como com estribos. / A proposal of an analytical model for determining the shear strength of exterior reinforced concrete beam-column joints is made in this work. A study of analytical models proposed by researchers and their application in a wide database with experimental results is done in order to verify the effectiveness of each analytical model. In parallel a parametric analysis by numerical simulation using the software DIANA® is performed in order to understand the behavior of the joint by analyzing the influence of the geometry, stress level in the column, longitudinal reinforcement ratio of beam and stirrup ratio and thus, it is proposed a model for predicting the shear strength based on the results of this parametric analysis. Finally the analytical design model proposed is applied to the database and presents good results proving its effectiveness for both external joint with and without stirrups.
12

An Analytical Study on the Behavior of Reinforced Concrete Interior Beam-Column Joints

Xing, Chenxi 06 August 2019 (has links)
Reinforced concrete (RC) moment frame structures make up a notable proportion of buildings in earthquake-prone regions in the United States and throughout the world. The beam-column (BC) joints are the most crucial regions in a RC moment frame structure as any deterioration of strength and/or stiffness in these areas can lead to global collapse of the structure. Thus, accurate simulations of the joint behavior are important for assessment of the local and global performance of both one-way and two-way interior BC joints. Such simulations can be used to study the flexural-shear-bond interaction, the failure modes, and sensitivity of various parameters of structural elements. Most of the existing analytical approaches for interior BC joints have either failed to account for the cyclic bond-slip behavior and the triaxial compressive state of confined concrete in the joint correctly or require so many calibrations on parameters as to render them impractical. The core motivation for this study is the need to develop robust models to test current design recommendations for 3D beam-column-slab subassemblies subjected to large drifts. The present study aims to first evaluate the flexural-shear-bond interactive behavior of two-way beam-column-slab interior connections by both finite element and nonlinear truss methodologies. The local performance such as bond-slip and strain history of reinforcing steel are compared with the experimental results for the first time. The reliability of applied finite element approach is evaluated against a series of one-way interior BC joints and a two-way interior beam-column-slab joint. The accuracy and efficiency of the nonlinear truss methodology is also evaluated by the same series of joints. Results show good agreement for finite element method against both global and local response, including hysteretic curve, local bond-slip development and beam longitudinal bar stress/strain distributions. The nonlinear truss model is also capable in obtaining satisfactory global response, especially in capturing large shear cracks. A parametric study is exhibited for a prototype two-way interior beam-column-slab joint described in an example to ACI 352R-02, to quantify several non-consensus topics in the design of interior BC connections, such as the joint shear force subjected to bidirectional cyclic loading, the development of bond-slip behavior, and the failure modes of two-way interior joints with slab. Results from connections with different levels of joint shear force subjected to unidirectional loading show that meeting the requirements from ACI 352 is essential to maintain the force transfer mechanism and the integrity of the joint. The connections achieved satisfactory performance under unidirectional loading, while the bidirectional monotonic loading decreases the joint shear force calculated by ACI 352 by 10%~26% based on current results. Poorer performance is obtained for wider beams and connections fail by shear in the joint rather than bond-slip behavior when subjected to bidirectional cyclic loading. In general, the study indicates that the ACI352-02 design methodology generally results in satisfactory performance when applied to 2D joints (planar) under monotonic and cyclic loads. Less satisfactory performance was found for cases of 3D joints with slabs. / Doctor of Philosophy / Reinforced concrete (RC) moment frames are one of the most popular structure types because of their economical construction and adaptable spaces. Moment frames consist of grid-like assemblages of vertical columns and horizontal beams joined by cruciform connections commonly labelled as beam-column joints. Because of the regularity of the grid and the ability to have long column spacing, moment frames are easy to form and cast and result in wide open bays that can be adapted and readapted to many uses. In RC structures, steel bars embedded in the concrete are used to take tensile forces, as concrete is relatively weak when loaded in tension. Forces are transferred between the steel and concrete components by so-called “bond” forces at the perimeter of the bars. The proper modeling of the behavior of bond forces inside the beam-column joints of reinforced concrete moment frames is the primary objective of this dissertation. Reinforced concrete moment frames constitute a notable proportion of the existing buildings in earthquake-prone regions in the United States and throughout the world. The beam-column joints are the most crucial elements in a RC moment frame structure as any deterioration of strength and/or stiffness in these areas can lead to global collapse of the structure. Physical experimentation is the most reliable means of studying the performance of beam-column joints. However, experimental tests are expensive and time-consuming. This is why computational simulation must always be used as a supplemental tool. Accurate simulations of the behavior of beam-column joints is important for assessment of the local and global behavior of beam-column joints. However, most of the existing analytical approaches for interior beam-column joints have either failed to account for the bond-slip behavior and the triaxial compressive state of confined concrete in the joint correctly or require so many calibration parameters as to render them impractical. The present study aims to provide reliable numerical methods for evaluating the behavior of two-way beam-column-slab interior joints. Two methods are developed. The v first method is a complex finite element model in which the beam-column joint is subdivided into many small 3D parts with the geometrical and material characteristics of each part carefully defined. Since the number of parts may be in the hundreds of thousands and the geometry and material behavior highly non-linear, setting up the problem and its solution of this problem requires large effort on the part of the structural engineer and long computation times in supercomputers. Finite element models of this type are generally accurate and are used to calibrate simpler models. The second method developed herein is a nonlinear truss analogy model. In this case the structure is modelled as nonlinear truss elements, or elements carrying only axial forces. When properly calibrated, this method can produce excellent results especially in capturing large shear cracks. To evaluate the accuracy and to quantify the current seismic design procedure for beam-column joints, a prototype two-way interior beam-column-slab joint described in an example to ACI 352R-02, the current design guide used for these elements in the USA, is analytically studied by the finite element methodology. The study indicates that the ACI352-02 design methodology generally results in satisfactory performance when applied to one-way (planar) joints under monotonic and cyclic loads. Less satisfactory performance was found for cases of three-dimensional (3D) joints with slabs.
13

Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé / Simplified models for the analysis of seismic risk of reinforced concrete buildings

Hasnaoui, Fadhila 23 June 2014 (has links)
Modélisations simplifiées pour l’analyse du risque sismique de bâtiments en béton armé. Résumé de la thèse en français (1800 signes max.) : La thèse s’inscrit dans le cadre du projet MARS (Méthodes Avancées pour le Risque Sismique, EDF R&D). Elle concerne plus particulièrement certaines tâches sur le développement des méthodes simplifiées et robustes de calcul pour permettre la simulation intensive et table de la réponse sismique de bâtiments en béton armé. En effet, |’analyse de risque nécessite un très grand nombre de calculs pour tenir compte des incertitudes, tant sur le chargement (aléa sismique) que sur le comportement non linéaire des structures. Dans la première partie de ce travail, nous effectuerons une étude bibliographique sur les modèles de résolution sismique pour les bâtiments en béton armé. Cette étape va nous permettre de rassembler le maximum d’éléments nécessaires permettant de comprendre et d’identifier tous les paramètres, les avantages, les inconvénients et la limite d’utilisation de chaque procédure de calcul numérique par éléments finis. Dans la deuxième partie, on développe un macro-élément de poteau-poutre, associé â un modèle de comportement non linéaire afin de traduire la réponse de la structure sous les sollicitations sismiques. Des hypothèses cinématiques ont été adoptées pour limiter le nombre de degrés de liberté. La loi de comportement globale en cisaillement est décrite dans le cadre delà plasticité. Nous avons choisi un modèle à écrouissage cinématique pour prendre en compte la dissipation due à la fissuration. Les paramètres sont identifiés à partir de résultats expérimentaux ou bien pré-calculés par des analyses â une échelle locale (calculs 3D par éléments finis ou calcul simplifié type « Modified Compression Field Theory >>). Des analyses numériques ont été réalisées afin de valider le modèle proposé comparant à des essais expérimentaux disponibles dans la littérature. / This PhD is part of the MARS project (Advanced Methods for Seismic Risk, EDF R&D). It relates particularity to the development of simplified and robust calculation. The overall aim is to significantly reduce the intensive computation time without loosing a reliable simulation of the seismic response of reinforced concrete buildings methods. Seismic risk analysis requires a very large number of repeated calculations to account for uncertainties of both the loading (seismichazard) and the nonlinear behaviour of structures. ln the first part of this work, a bibliographic study on seismic resolution models for reinforced concrete buildings is provided. This step allows collecting the maximum of necessary elements to understand and identify all the parameters, advantages, disadvantages and limits of use of each finite element calculation method. In the second part, a macro—elements for beam—column joint associated to a nonlinear behavior to reflect the response to the structure under seismic loads ls developed. Kinematic assumptions have been adopted to limit the number of degrees of freedom. The law of global shear behavior is described in the context of plasticity. A model with kinematic hardening is chosen to account for the dissipation due to cracking. Model parameters are identified from experimental results or pre-calculated by analysis on a local scale vla 3D finite element calculation or the implied "Modihed Compression Field Theory Numerical analyses were performed to validate the proposed approach against experimental tests available in the literature.
14

Nonlinear finite element analysis of reinforced concrete exterior beam-column joints with nonseismic detailing

Deaton, James B. 11 January 2013 (has links)
This research investigated the behavior of nonseismically detailed reinforced concrete exterior beam-column joints subjected to bidirectional lateral cyclic loading using nonlinear finite element analysis (NLFEA). Beam-column joints constitute a critical component in the load path of reinforced concrete buildings due to their fundamental role in integrating the overall structural system. Earthquake reconnaissance reports reveal that failure of joints has contributed to partial or complete collapse of reinforced concrete buildings designed without consideration for large lateral loads, resulting in significant economic impact and loss of life. Such infrastructure exists throughout seismically active regions worldwide, and the large-scale risk associated with such deficiencies is not fully known. Computational strategies provide a useful complement to the existing experimental literature on joint behavior and are needed to more fully characterize the failure processes in seismically deficient beam-column joints subjected to realistic failure conditions. Prior to this study, vulnerable reinforced concrete corner beam-column joints including the slab had not been analyzed using nonlinear finite element analysis and compared with experimental results. The first part of this research focused on identification and validation of a constitutive modeling strategy capable of simulating the behaviors known to dominate failure of beam-column joints under cyclic lateral load using NLFEA. This prototype model was formulated by combining a rotating smeared crack concrete constitutive model with a reinforcing bar plasticity model and nonlinear bond-slip formulation. This model was systematically validated against experimental data, and parametric studies were conducted to determine the sensitivity of the response to various material properties. The prototype model was then used to simulate the cyclic response of four seismically deficient beam-column joints which had been previously evaluated experimentally. The simulated joints included: a one-way exterior joint, a two-way beam-column exterior corner joint, and a series of two-way beam-column-slab exterior corner joints with varying degrees of seismic vulnerability. The two-way corner joint specimens were evaluated under simultaneous cyclic bidirectional lateral and cyclic column axial loading. For each specimen, the ability of the prototype model to capture the strength, stiffness degradation, energy dissipation, joint shear strength, and progressive failure mechanisms (e.g. cracking) was demonstrated.

Page generated in 0.0684 seconds