• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 821
  • 287
  • 94
  • 49
  • 47
  • 36
  • 36
  • 36
  • 36
  • 36
  • 36
  • 20
  • 15
  • 15
  • 8
  • Tagged with
  • 1850
  • 542
  • 268
  • 255
  • 212
  • 211
  • 193
  • 184
  • 181
  • 169
  • 167
  • 151
  • 128
  • 119
  • 111
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Evaluation of the ductility of composite steel I-girders in positive bending

Roberts, Nicholas R. January 2004 (has links)
Thesis (M.S.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xiii, 153 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 151-153).
162

Behavior and design of precast prestressed concrete inverted tee girders with multiple web openings for service systems /

Thompson, James M., January 2004 (has links)
Thesis (Ph. D.)--Lehigh University, 2004. / Includes vita. In two parts. Includes bibliographical references (leaves 508-510).
163

Line-of-sight propagation of optical wave through multiple-scatter channel in optical wireless communication system /

Ketprom, Urachada. January 2005 (has links)
Thesis (Ph. D.)--University of Washington, 2005. / Vita. Includes bibliographical references (leaves 134-136).
164

Crack-induced debonding failure in fiber reinforced plastics (FRP) strengthened concrete beams : experimental and theoretical analysis /

Pan, Jinlong. January 2005 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2005. / Includes bibliographical references (leaves 293-308). Also available in electronic version.
165

Inverse Problems in Free Vibration Analysis of Rotating and Non-Rotating Beams and its Application to Random Eigenvalue Characterization

Sarkar, Korak January 2016 (has links) (PDF)
Rotating and non-rotating beams are widely used to model important engineering struc-tures. Hence, the vibration analyses of these beams are an important problem from a structural dynamics point of view. Depending on the beam dimensions, they are mod-eled using different beam theories. In most cases, the governing differential equations of these types of beams do not yield any simple closed-form solutions; hence we look for the inverse problem approach in determining the beam property variations given certain solutions. The long and slender beams are generally modeled using the Euler-Bernoulli beam theory. Under the premise of this theory, we study (i) the second mode tailoring of non-rotating beams having six different boundary conditions, (ii) closed-form solutions for free vibration analysis of free-free beams, (iii) closed-form solutions for free vibration analysis for gravity-loaded cantilever beams, (iv) closed-form solutions for free vibration analysis of rotating cantilever and pinned-free beams and (v) beams with shared eigen-pair. Short and thick beams are generally modeled using the Timoshenko beam theory. Here, we provide analytical closed-form solutions for the free vibration analysis of ro-tating non-homogeneous Timoshenko beams. The Rayleigh beam provides a marginal improvement over the Euler-Bernoulli beam theory without venturing into the math-ematical complexities of the Timoshenko beam theory. Under this theory, we provide closed-form solutions for the free vibration analysis of cantilever Rayleigh beams under three different axial loading conditions - uniform loading, gravity-loading and centrifu-gally loaded. We assume simple polynomial mode shapes which satisfy the different boundary conditions of a particular beam, and derive the corresponding beam property variations. In case of the shared eigenpair, we use the mode shape of a uniform beam which has a closed-form solution and use it to derive the stiffness distribution of a corresponding axially loaded beam having same length, mass variation and boundary condition. For the Timoshenko beam, we assume polynomial functions for the bending displacement and the rotation due to bending. The derived properties are demonstrated as benchmark analytical solutions for approximate and numerical methods used for the free vibration analysis of beams. They can also aid in designing actual beams for a pre-specified frequency or nodal locations in some cases. The effect of different parameters in the derived property variations and the bounds on the pre-specified frequencies and nodal locations are also studied for certain cases. The derived analytical solutions can also serve as a benchmark solution for different statistical simulation tools to find the probabilistic nature of the derived stiffness distri-bution for known probability distributions of the pre-specified frequencies. In presence of uncertainty, this flexural stiffness is treated as a spatial random field. For known probability distributions of the natural frequencies, the corresponding distribution of this field is determined analytically for the rotating cantilever Euler-Bernoulli beams. The derived analytical solutions are also used to derive the coefficient of variation of the stiffness distribution, which is further used to optimize the beam profile to maximize the allowable tolerances during manufacturing.
166

Behavior Of Partially Prestressed Concrete T-Beams Having Steel Fibers Over Partial Or Full Depth - An Experimental And Analytical Study

Thomas, Job 09 1900 (has links) (PDF)
No description available.
167

Determination Of Isopectral Rotating And Non-Rotating Beams

Kambampati, Sandilya 08 1900 (has links) (PDF)
In this work, rotating beams which are isospectral to non-rotating beams are studied. A rotating beam is isospectral to a non-rotating beam if both the beams have the same spectral properties i.e; both the beams have the same set of natural frequencies under a given boundary condition. The Barcilon-Gottlieb transformation is extended, so that it converts the fourth order governing equation of a rotating beam (uniform or non-uniform), to a canonical fourth order eigenvalue equation. If the coefficients in this canonical equation match with the coefficients of the non-rotating beam (non-uniform or uniform) equation, then the rotating and non-rotating beams are isospectral to each other. The conditions on matching the coefficients lead to a pair of coupled differential equations. We solve these coupled differential equations for a particular case, and thereby obtain a class of isospectral rotating and non-rotating beams. However, to obtain isospectral beams, the transformation must leave the boundary conditions invariant. We show that the clamped end boundary condition is always invariant, and for the free end boundary condition to be invariant, we impose certain conditions on the beam characteristics. The mass and stiffness functions for the isospectral rotating and non-rotating beams are obtained. We use these mass and stiffness functions in a finite element analysis to verify numerically the isospectral property of the rotating and non-rotating beams. Finally, the example of beams having a rectangular cross section is presented to show the application of our analysis. Since experimental determination of rotating beam frequencies is a difficult task, experiments can be easily conducted on these rectangular non-rotating beams, to calculate the frequencies of the isospectral rotating beams.
168

An investigation of the strain in reinforced-concrete beams of unusual depth / Reinforced concrete beams

Gilkison, G. M. (Gordon Mercer), Millard, R. W. January 1909 (has links)
Thesis: B.S., Massachusetts Institute of Technology, Department of Mechanical Engineering, 1909 / by G.M. Gilkison, R.W. Millard. / B.S. / B.S. Massachusetts Institute of Technology, Department of Mechanical Engineering
169

Influence of section depth on the structural behaviour of reinforced concrete continuous deep beams

Yang, Keun-Hyeok, Ashour, Ashraf January 2007 (has links)
Yes / Although the depth of reinforced concrete deep beams is much higher than that of slender beams, extensive existing tests on deep beams have focused on simply supported beams with a scaled depth below 600 mm. In the present paper, test results of 12 two-span reinforced concrete deep beams are reported. The main parameters investigated were the beam depth, which is varied from 400 mm to 720 mm, concrete compressive strength and shear span-tooverall depth ratio. All beams had the same longitudinal top and bottom reinforcement and no web reinforcement to assess the effect of changing the beam depth on the shear strength of such beams. All beams tested failed owing to a significant diagonal crack connecting the edges of the load and intermediate support plates. The influence of beam depth on shear strength was more pronounced on continuous deep beams than simple ones and on beams having higher concrete compressive strength. A numerical technique based on the upper bound analysis of the plasticity theory was developed to assess the load capacity of continuous deep beams. The influence of the beam depth was covered by the effectiveness factor of concrete in compression to cater for size effect. Comparisons between the total capacity from the proposed technique and that experimentally measured in the current investigation and elsewhere show good agreement, even though the section depth of beams is varied.
170

Accelerating Optical Airy Beams

Siviloglou, Georgios 01 January 2010 (has links)
Over the years, non-spreading or non-diffracting wave configurations have been systematically investigated in optics. Perhaps the best known example of a diffraction-free optical wave is the so-called Bessel beam, first suggested and observed by Durnin et al. This work sparked considerable theoretical and experimental activity and paved the way toward the discovery of other interesting non-diffracting solutions. In 1979 Berry and Balazs made an important observation within the context of quantum mechanics: they theoretically demonstrated that the Schrodinger equation describing a free particle can exhibit a non-spreading Airy wavepacket solution. This work remained largely unnoticed in the literature-partly because such wavepackets cannot be readily synthesized in quantum mechanics. In this dissertation we investigate both theoretically and experimentally the acceleration dynamics of non-spreading optical Airy beams in both one- and two-dimensional configurations. We show that this class of finite energy waves can retain their intensity features over several diffraction lengths. The possibility of other physical realizations involving spatio-temporal Airy wavepackets is also considered. As demonstrated in our experiments, these Airy beams can exhibit unusual features such as the ability to remain quasi-diffraction-free over long distances while their intensity features tend to freely accelerate during propagation. We have demonstrated experimentally that optical Airy beams propagating in free space can perform ballistic dynamics akin to those of projectiles moving under the action of gravity. The parabolic trajectories of these beams as well as the motion of their center of gravity were observed in good agreement with theory. Another remarkable property of optical Airy beams is their resilience in amplitude and phase perturbations. We show that this class of waves tends to reform during propagation in spite of the severity of the imposed perturbations. In all occasions the reconstruction of these beams is interpreted through their internal transverse power flow. The robustness of these optical beams in scattering and turbulent environments was also studied. The experimental observation of self-trapped Airy beams in unbiased nonlinear photorefractive media is also reported. This new class of non-local self-localized beams owes its existence to carrier diffusion effects as opposed to self-focusing. These finite energy Airy states exhibit a highly asymmetric intensity profile that is determined by the inherent properties of the nonlinear crystal. In addition, these wavepackets self-bend during propagation at an acceleration rate that is independent of the thermal energy associated with two-wave mixing diffusion photorefractive nonlinearity.

Page generated in 0.0508 seconds